Analysis of hygrothermal comfort assurance systems in educational infrastructure. Case study: Abdón Calderón Educational Unit
DOI:
https://doi.org/10.5377/arquitectura.v10i20.21404Keywords:
Architectural-strategies, ASHRAE 55-2020, educational-environments, hygrothermal-comfort, thermal-sensationsAbstract
Hygrothermal comfort in educational settings is crucial for the well-being and academic performance of students and teachers. In rural areas of Ecuador, many schools were not built with the local climate in mind, leading to thermal discomfort. The purpose of this study was to analyze users' perceptions of hygrothermal comfort in a public school using the thermal sensation scale established by the ASHRAE 55-2020 standard, considering sociodemographic variables, thermal behavior, and multisensory perception of the built environment. The research was quantitative, descriptive, and cross-sectional, and included a sample of 106 participants from the morning shift. A structured survey was administered, validated, and adapted to the school context. The survey data revealed users' opinions about the environment, characterized by high thermal conditions, high relative humidity, poor ventilation, noise, strong odors, and inadequate lighting, all of which generate discomfort in occupants and, consequently, alterations in emotional control. Furthermore, respondents expressed a preference for cooler, drier, and quieter conditions. Consequently, it can be concluded that classrooms do not meet the recommended thermal comfort standards, making it necessary to adapt architectural and school management strategies to improve the learning environment.
Downloads
8
References
American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE). (2020). Thermal environmental conditions for human occupancy. ASHRAE Standard 55-2020. https://www.scribd.com/document/695087734/ASHRAE-55-2020
Barni, S. (2017). Comfort improvement in schools through energetic optimization of the building: Multicriteria analysis on a case study [Tesis de maestría, Politecnico di Milano]. Politecnico di Milano, School of Architecture Urban Planning Construction Engineering. https://hdl.handle.net/10589/140485
Boutet, M. L., Hernández, A. L., & Jacobo, G. J. (2020). Methodology of quantitative analysis and diagnosis of higro-thermal and lighting monitoring for school buildings in a hot-humid mid-latitude climate. Renewable Energy, 145, 2463–2476. https://doi.org/10.1016/j.renene.2019.08.009
Fanger, P. (1970). Thermal Comfort. Analysis and applications in environmental engineering. Copenhagen: Danish Technical Press. Thermal Comfort. Analysis and applications in environmental engineering: https://www.cabdirect.org/cabdirect/abstract/19722700268
Heredia García, C. I. (2023). Análisis de confort higrotérmico al interior de vivienda unifamiliar mediante CFD. Academia XXII, 14(28), 275-290. https://doi.org/10.22201/fa.2007252xp.2023.14.28.87247
Hernández-Sampieri, R., & Mendoza, C. (2020). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. https://www.academia.edu/download/64312353/Investigacion_Rutas_cualitativa_y_cuantitativa.pdf
International Organization for Standardization [ISO]. (2005). ISO 7730:2005. Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Geneva: ISO. https://www.iso.org/standard/39155.html
International Organization for Standardization [ISO]. (2015). ISO 9001:2015 — Sistemas de gestión de la calidad: Requisitos [Norma]. https://www.iso.org/obp/ui/es/#iso:std:iso:9001:ed-5:v1:es
International Organization for Standardization [ISO]. (2019). ISO 10551:2019. Ergonomics of the physical environment — Subjective judgement scales for assessing physical environments [International standard]. https://www.iso.org/standard/67186.html
Llanos-Jiménez, J., Suárez, R., Alonso, A., & Sendra, J. J. (2024). Objective and subjective indoor air quality and thermal comfort indices: Characterization of Mediterranean climate archetypal schools after the COVID‐19 pandemic. Indoor Air, 2024(1), 2456666. https://doi.org/10.1155/2024/2456666
Maristany, A., & Angiolini, S. (2017). Calor, envolventes y eficiencia energética. Editorial de la Facultad de Arquitectura, Urbanismo y Diseño de la Universidad Nacional de Córdoba. https://es.slideshare.net/slideshow/calor-envolventes-y-eficiencia-energticapdf/257772817
Miao, S., Gangolells, M., & Tejedor, B. (2023). A comprehensive assessment of indoor air quality and thermal comfort in educational buildings in the Mediterranean climate. Indoor Air, 2023(1), 6649829. https://doi.org/10.1155/2023/6649829
Miao, S., Gangolells, M., & Tejedor, B. (2024). Improving the thermal comfort model for students in naturally ventilated schools: Insights from a holistic study in the Mediterranean climate. Building and Environment, 258, 111622. https://doi.org/10.1016/j.buildenv.2024.111622
Ministerio de Educación del Ecuador. (2025). Manual de lineamientos de infraestructura educativa. https://educacion.gob.ec/wp-content/uploads/downloads/2025/04/manual-lineamientos-infraestructura-educativa.pdf
Montoya, O., & San Juan, G. (2022). Recomendaciones de diseño para definir la situación de confort térmico en aulas escolares en clima cálido. AREA, Agenda de Reflexión en Arquitectura, Diseño y Urbanismo, 28(2), 5. https://dialnet.unirioja.es/servlet/articulo?codigo=8641082
Nico, M. A., Liuzzi, S., & Stefanizzi, P. (2015). Evaluation of thermal comfort in university classrooms through objective approach and subjective preference analysis. Applied Ergonomics, 48, 111–120. https://doi.org/10.1016/j.apergo.2014.11.013
Piñeiro Lago, M. (2015). Arquitectura bioclimática: consecuencias en el lenguaje arquitectónico [Trabajo de fin de grado, Universidade da Coruña]. Universidade da Coruña, Repositorio Institucional (RUC). http://hdl.handle.net/2183/15941
Raimondi, G. M. del C., Saganias, J., Thomaschewsky, L., Garzón, B., & Ferreiro, A. (2023). Rehabilitación energética de escuela rural en Santiago del Estero-Argentina: evaluación del confort higrotérmico. Revista Ingeniería, Matemáticas y Ciencias de la Información, 10(19), 21-32. http://dx.doi.org/10.21017/rimci.2023.v10.n19.a126
Rodríguez, C. M., Coronado, M. C., & Medina, J. M. (2021). Thermal comfort in educational buildings: The Classroom-Comfort-Data method applied to schools in Bogotá, Colombia. Building and Environment, 194, 107682. https://doi.org/10.1016/j.buildenv.2021.107682
Rodríguez, M., & Mendivelso, F. (2018). Diseño de investigación de corte transversal. Revista Médica Sanitas, 21(3), 141-147. https://doi.org/10.26852/01234250.20
Romero, P., Miranda, M. T., Montero, I., Sepúlveda, F. J., & Valero-Amaro, V. (2023). Critical review of the literature on thermal comfort in educational buildings: Study of the influence of the COVID-19 pandemic. Indoor Air, 2023(1), 8347598. https://doi.org/10.1155/2023/8347598
Taborda Ocampo, F. J., & Brausin Pérez, J. (2020). Fundamentos éticos en el proceso de investigación social. Saberes Y prácticas. Revista De Filosofía Y Educación, 5(2), 1–17. https://revistas.uncu.edu.ar/ojs3/index.php/saberesypracticas/article/view/2415
Tagliabue, L. C., Accardo, D., Kontoleon, K. J., & Ciribini, A. L. C. (2020). Indoor comfort conditions assessment in educational buildings with respect to adaptive comfort standards in European climate zones. IOP Conference Series: Earth and Environmental Science, 410(1), 012094. https://iopscience.iop.org/article/10.1088/1755-1315/410/1/012094
Tagliabue, L. C., Re Cecconi, F., Rinaldi, S., & Ciribini, A. L. C. (2021). Data driven indoor air quality prediction in educational facilities based on IoT network. Energy and Buildings, 236, 110782. https://doi.org/10.1016/j.enbuild.2021.110782
Tinoco Gómez, O. (2008). Una aplicación de la prueba chi cuadrado con SPSS. Industrial data, 11(1), 73-77. http://www.redalyc.org/articulo.oa?id=81611211011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Universidad Nacional de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.













