Revisión Sistemática Exploratoria: Tecnologías Ecológicas en la Construcción para Edificios Energéticamente Eficientes y Sostenibles
DOI:
https://doi.org/10.5377/arquitectura.v10i19.20561Palabras clave:
Construcción, desarrollo-sustentable, ecología, eficiencia-energética, tecnologías-verdesResumen
El artículo presenta un mapeo de la literatura científica sobre tecnologías verdes aplicadas en la construcción entre 2014 y 2024. El objetivo es identificar tecnologías efectivas que tengan el potencial para proporcionar una mejor eficiencia energética y ser más sostenibles. A través de una revisión sistemática exploratoria se seleccionaron 60 artículos de bases de datos como Elsevier, Springer y IEEE. Los resultados destacan tecnologías como paredes verdes, diseño pasivo, IoT, sistemas fotovoltaicos, aerogeneradores, IA y técnicas de impresión 3D. Se concluye que el poder de estas tecnologías a la hora de ahorrar energía y reducir las emisiones de CO2 para convertirse así en más sostenible. Y ahí radica la importancia de las políticas del Gobierno y la colaboración intersectorial para potenciar el uso de estas tecnologías y cumplir con los objetivos de desarrollo sostenible. Un trabajo de investigación que supone una hoja de ruta seria para futuras prácticas y estudios en materia de construcción sostenible.
Descargas
877
Citas
Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Delgado, J. M. D., Bilal, M., ... & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 44, 103299. https://doi.org/10.1016/j.jobe.2021.103299
Ahmad, M. W., Mourshed, M., Mundow, D., Sisinni, M., & Rezgui, Y. (2016). Building energy metering and environmental monitoring–A state-of-the-art review and directions for future research. Energy and Buildings, 120, 85-102. https://doi.org/10.1016/j.enbuild.2016.03.059
Akeiber, H., Nejat, P., Majid, M. Z. A., Wahid, M. A., Jomehzadeh, F., Famileh, I. Z., ... & Zaki, S. A. (2016). A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renewable and Sustainable Energy Reviews, 60, 1470-1497.
Allacker, K., Castellani, V., Baldinelli, G., Bianchi, F., Baldassarri, C., & Sala, S. (2019). Energy simulation and LCA for macro-scale analysis of eco-innovations in the housing stock. The International Journal of Life Cycle Assessment, 24, 989-1008. https://link.springer.com/article/10.1007/s11367-018-1548-3
Arshad, R., Zahoor, S., Shah, M. A., Wahid, A., & Yu, H. (2017). Green IoT: An investigation on energy saving practices for 2020 and beyond. Ieee Access, 5, 15667-15681. https://ieeexplore.ieee.org/abstract/document/7997698
Azkorra, Z., Pérez, G., Coma, J., Cabeza, L. F., Burés, S., Álvaro, J. E., ... & Urrestarazu, M. (2015). Evaluation of green walls as a passive acoustic insulation system for buildings. Applied acoustics, 89, 46-56. https://doi.org/10.1016/j.apacoust.2014.09.010
Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., ... & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. https://doi.org/10.1016/j.autcon.2022.104440
Beccali, M., Strazzeri, V., Germanà, M. L., Melluso, V., & Galatioto, A. (2018). Vernacular and bioclimatic architecture and indoor thermal comfort implications in hot-humid climates: An overview. Renewable and Sustainable Energy Reviews, 82, 1726-1736. https://doi.org/10.1016/j.rser.2017.06.062
Bello, S. A., Oyedele, L. O., Akinade, O. O., Bilal, M., Delgado, J. M. D., Akanbi, L. A., ... & Owolabi, H. A. (2021). Cloud computing in construction industry: Use cases, benefits and challenges. Automation in Construction, 122, 103441. https://doi.org/10.1016/j.autcon.2020.10344 1
Bhati, A., Hansen, M., & Chan, C. M. (2017). Energy conservation through smart homes in a smart city: A lesson for Singapore households. Energy Policy, 104, 230-239. https://doi.org/10.1016/j.enpol.2017.01.032
Chel, A., & Kaushik, G. (2018). Renewable energy technologies for sustainable development of energy efficient building. Alexandria engineering journal, 57(2), 655-669. https://doi.org/10.1016/j.aej.2017.02.027
Conforme-Zambrano, G. D. C., & Castro-Mero, J. L. (2020). Arquitectura bioclimática. Polo del conocimiento, 5(3), 751-779. http://polodelconocimiento.com/ojs/index.php/es/article/view/1381
D’Agostino, D. (2015). Assessment of the progress towards the establishment of definitions of Nearly Zero Energy Buildings (nZEBs) in European Member States. J. Build. Eng, 1, 20-32. https://web.fe.up.pt/~nguerreiro/artigos/avaliacao_progresso_nzeb.pdf
Economidou, M., Todeschi, V., Bertoldi, P., D'Agostino, D., Zangheri, P., & Castellazzi, L. (2020). Review of 50 years of EU energy efficiency policies for buildings. Energy and buildings, 225, 110322. https://doi.org/10.1016/j.enbuild.2020.110322
Esposito, D., & Antonietti, M. (2015). Redefining biorefinery: the search for unconventional building blocks for materials. Chemical Society Reviews, 44(16), 5821-5835. https://pubs.rsc.org/en/content/articlehtml/2015/cs/c4cs00368c
Fawzy, S., Osman, A. I., Doran, J., & Rooney, D. W. (2020). Strategies for mitigation of climate change: a review. Environmental Chemistry Letters, 18, 2069-2094. https://link.springer.com/article/10.1007/s10311-020-01059-w
Foster, G. (2020). Circular economy strategies for adaptive reuse of cultural heritage buildings to reduce environmental impacts. Resources, Conservation and Recycling, 152, 104507. https://doi.org/10.1016/j.resconrec.2019.104507
Gaviria, J. A., Valencia, V., Olaya, Y., & Aramburo, S. A. (2018). Construcción sostenible. Editores científicos, 47.
González-Torres, M., Pérez-Lombard, L., Coronel, J. F., Maestre, I. R., & Yan, D. (2022). A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports, 8, 626-637. https://doi.org/10.1016/j.egyr.2021.11.280
Ghaffar, S. H., Corker, J., & Fan, M. (2018). Additive manufacturing technology and its implementation in construction as an eco-innovative solution. Automation in construction, 93, 1-11. https://doi.org/10.1016/j.autcon.2018.05.005
Ghaffar, S. H., Burman, M., & Braimah, N. (2020). Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. Journal of cleaner production, 244, 118710. https://doi.org/10.1016/j.jclepro.2019.118710
Habert, G., & Ouellet-Plamondon, C. (2016). Recent update on the environmental impact of geopolymers, RILEM Tech. Lett. 1 (2016) 17. https://doi.org/10.21809/rilemtechlett.2016.6
Hager, I., Golonka, A., & Putanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable construction?. Procedia Engineering, 151, 292-299. https://doi.org/10.1016/j.proeng.2016.07.357
Hernández-Zamora, M. F., Jiménez-Martinez, S., & Sánchez-Monge, J. I. (2021). Materiales alternativos como oportunidad de reducción de impactos ambientales en el sector construcción. Revista Tecnología en Marcha, 34(2), 3-10. http://dx.doi.org/10.18845/tm.v34i2.4831
Hertwich, E. G., Ali, S., Ciacci, L., Fishman, T., Heeren, N., Masanet, E., ... & Wolfram, P. (2019). Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environmental Research Letters, 14(4), 043004. https://iopscience.iop.org/article/10.1088/1748-9326/ab0fe3
Hesselink, L. X., & Chappin, E. J. (2019). Adoption of energy efficient technologies by households–Barriers, policies and agent-based modelling studies. Renewable and Sustainable Energy Reviews, 99, 29-41. https://doi.org/10.1016/j.rser.2018.09.031
Himeur, Y., Ghanem, K., Alsalemi, A., Bensaali, F., & Amira, A. (2021). Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Applied Energy, 287, 116601. https://doi.org/10.1016/j.apenergy.2021.116601
Iavicoli, I., Leso, V., Ricciardi, W., Hodson, L. L., & Hoover, M. D. (2014). Opportunities and challenges of nanotechnology in the green economy. Environmental health, 13, 1-11. https://link.springer.com/article/10.1186/1476-069X-13-78
Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Ahmad, D., & Lipinski, T. (2020). Latent thermal energy storage technologies and applications: A review. International Journal of Thermofluids, 5, 100039. https://doi.org/10.1016/j.ijft.2020.100039
Kaewunruen, S., Rungskunroch, P., & Welsh, J. (2018). A digital-twin evaluation of net zero energy building for existing buildings. Sustainability, 11(1), 159. https://doi.org/10.3390/su11010159
Kern, F., Kivimaa, P., & Martiskainen, M. (2017). Policy packaging or policy patching? The development of complex energy efficiency policy mixes. Energy research & social science, 23, 11-25. https://doi.org/10.1016/j.erss.2016.11.002
Khajavi, S. H., Motlagh, N. H., Jaribion, A., Werner, L. C., & Holmström, J. (2019). Digital twin: vision, benefits, boundaries, and creation for buildings. IEEE access, 7, 147406-147419. https://ieeexplore.ieee.org/abstract/document/8863491
Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and sustainable energy reviews, 69, 596-609. https://doi.org/10.1016/j.rser.2016.11.191
Maasoumy, M., Razmara, M., Shahbakhti, M., & Vincentelli, A. S. (2014). Handling model uncertainty in model predictive control for energy efficient buildings. Energy and Buildings, 77, 377-392. https://doi.org/10.1016/j.enbuild.2014.03.057
Manchado Garabito, R., Tamames Gómez, S., López González, M., Mohedano Macías, L., & Veiga de Cabo, J. (2009). Revisiones sistemáticas exploratorias. Medicina y seguridad del trabajo, 55(216), 12-19. https://scielo.isciii.es/scielo.php?pid=S0465-546X2009000300002&script=sci_arttext&tlng=en
Martiskainen, M. (2017). The role of community leadership in the development of grassroots innovations. Environmental Innovation and Societal Transitions, 22, 78-89. https://doi.org/10.1016/j.eist.2016.05.002
Mayer, M. J., Szilágyi, A., & Gróf, G. (2020). Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm. Applied Energy, 269, 115058. https://doi.org/10.1016/j.apenergy.2020.115058
Mushtaha, E., Salameh, T., Kharrufa, S., Mori, T., Aldawoud, A., Hamad, R., & Nemer, T. (2021). The impact of passive design strategies on cooling loads of buildings in temperate climate. Case Studies in Thermal Engineering, 28, 101588. https://doi.org/10.1016/j.csite.2021.101588
Nižetić, S., Šolić, P., Gonzalez-De, D. L. D. I., & Patrono, L. (2020). Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. Journal of cleaner production, 274, 122877. https://doi.org/10.1016/j.jclepro.2020.122877
Liu, Z., Zhou, Q., Tian, Z., He, B. J., & Jin, G. (2019). A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China. Renewable and Sustainable Energy Reviews, 114, 109314. https://doi.org/10.1016/j.rser.2019.109314
Loonen, R. C., Favoino, F., Hensen, J. L., & Overend, M. (2017). Review of current status, requirements and opportunities for building performance simulation of adaptive facades. Journal of Building Performance Simulation, 10(2), 205-223. https://doi.org/10.1080/19401493.2016.1152303
López, F. J., Lerones, P. M., Llamas, J., Gómez-García-Bermejo, J., & Zalama, E. (2018). A review of heritage building information modeling (H-BIM). Multimodal Technologies and Interaction, 2(2), 21. https://doi.org/10.3390/mti2020021
Lucon, O., Ürge-Vorsatz, D., Ahmed, A. Z., Akbari, H., Bertoldi, P., Cabeza, L. F., ... & Vilariño, M. V. (2014). Buildings. https://pure.iiasa.ac.at/id/eprint/11117/
Raabe, D., Tasan, C. C., & Olivetti, E. A. (2019). Strategies for improving the sustainability of structural metals. Nature, 575(7781), 64-74. https://www.nature.com/articles/s41586-019-1702-5
Radić, M., Brković Dodig, M., & Auer, T. (2019). Green facades and living walls—a review establishing the classification of construction types and mapping the benefits. Sustainability, 11(17), 4579. https://doi.org/10.3390/su11174579
Ragheb, G., El-Shimy, H., & Ragheb, A. (2015). Green architecture: A concept of sustainability Soc. Behavioral Sciences (Basel, Switzerland), 2, 324-333. https://doi.org/10.1016/j.sbspro.2015.12.075
Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., ... & Scherman, O. (2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, 333-359. https://doi.org/10.1016/j.rser.2016.09.107
Ramos Ruiz, G., & Fernández Bandera, C. (2017). Validation of calibrated energy models: Common errors. Energies, 10(10), 1587. https://doi.org/10.3390/en10101587
Rogge, K. S., Kern, F., & Howlett, M. (2017). Conceptual and empirical advances in analysing policy mixes for energy transitions. Energy Research & Social Science, 33, 1-10. https://doi.org/10.1016/j.erss.2017.09.025
Sakin, M., & Kiroglu, Y. C. (2017). 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM. Energy Procedia, 134, 702-711. https://doi.org/10.1016/j.egypro.2017.09.562
Scrivener, K. L. (2014). Options for the future of cement. Indian Concr. J, 88(7), 11-21. https://www.giatecscientific.com/wp-content/uploads/2018/05/0851_ICJ_Article.pdf
Seghier, T. E., Lim, Y. W., Ahmad, M. H., & Samuel, W. O. (2017). Building envelope thermal performance assessment using visual programming and BIM, based on ETTV requirement of Green Mark and GreenRE. International journal of built environment and sustainability, 4(3). https://ijbes.utm.my/index.php/ijbes/article/view/216
Seghier, T. E., Ahmad, M. H., & Lim, Y. W. (2019). Automation of concrete usage index (CUI) assessment using computational BIM. International Journal of Built Environment and Sustainability, 6(1), 23-30. https://core.ac.uk/download/pdf/287744161.pdf
Serale, G., Fiorentini, M., Capozzoli, A., Bernardini, D., & Bemporad, A. (2018). Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: Problem formulation, applications and opportunities. Energies, 11(3), 631. https://doi.org/10.3390/en11030631
Sergeev, V. V., Petrichenko, M. R., Nemova, D., Kotov, E. V., Tarasova, D. S., Nefedova, A. V., & Borodinecs, A. (2018). The building extension with energy efficiency light-weight building walls. Magazine of Civil Engineering, (8 (84)), 67-74. https://cyberleninka.ru/article/n/the-building-extension-with-energy-efficiency-light-weight-building-walls
Seyedzadeh, S., Rahimian, F. P., Glesk, I., & Roper, M. (2018). Machine learning for estimation of building energy consumption and performance: a review. Visualization in Engineering, 6, 1-20. https://link.springer.com/article/10.1186/s40327-018-0064-7
Shcherbak, V. G., Ganushchak-Yefimenko, L., Nifatova, O., Dudko, P., Savchuk, N., & Solonenchuk, I. (2019). Application of international energy efficiency standards for energy auditing in a University buildings. Global Journal of Environmental Science and Management, 5(4), 501-514. https://doi.org/10.22034/GJESM.2019.04.09
Shahrubudin, N., Lee, T. C., & Ramlan, R. J. P. M. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35, 1286-1296. https://doi.org/10.1016/j.promfg.2019.06.089
Shan, S., Genç, S. Y., Kamran, H. W., & Dinca, G. (2021). Role of green technology innovation and renewable energy in carbon neutrality: A sustainable investigation from Turkey. Journal of Environmental Management, 294, 113004. https://doi.org/10.1016/j.jenvman.2021.113004
Sovacool, B. K., & Del Rio, D. D. F. (2020). Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies. Renewable and sustainable energy reviews, 120, 109663. https://doi.org/10.1016/j.rser.2019.109663
Taleb, H. M. (2014). Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in UAE buildings. Frontiers of architectural research, 3(2), 154-165. https://doi.org/10.1016/j.foar.2014.01.002
Tian, J., Yu, L., Xue, R., Zhuang, S., & Shan, Y. (2022). Global low-carbon energy transition in the post-COVID-19 era. Applied energy, 307, 118205. https://doi.org/10.1016/j.apenergy.2021.118205
Ullah, I., Ahmad, R., & Kim, D. (2018). A prediction mechanism of energy consumption in residential buildings using hidden markov model. Energies, 11(2), 358. https://doi.org/10.3390/en11020358
Ürge-Vorsatz, D., Cabeza, L. F., Serrano, S., Barreneche, C., & Petrichenko, K. (2015). Heating and cooling energy trends and drivers in buildings. Renewable and Sustainable Energy Reviews, 41, 85-98. https://doi.org/10.1016/j.rser.2014.08.039
Yang, L., Qian, F., Song, D. X., & Zheng, K. J. (2016). Research on urban heat-island effect. Procedia engineering, 169, 11-18. https://doi.org/10.1016/j.proeng.2016.10.002
Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6), 1473. https://doi.org/10.3390/en13061473
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Universidad Nacional de Ingeniería

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.













