Nitrogen fixation by indirect titration of ammonium ion of bacteria isolated from rhizosphere and caulosphere of maize plants (Zea mays L.)
DOI:
https://doi.org/10.5377/ribcc.v10i19.19988Keywords:
Bacillus spp, Pseudomonas spp, Azotobacter spp, ammonium, nitrogenAbstract
Background: Mexico is one of the main producers, exporters and consumers of corn in the world. For maximum yield of the product, nitrogen fertilizers are supplied as the main source of nutrients. However, their excessive use is creating a contamination problem. Objective: The main objective was to isolate and select nitrogen-fixing bacteria from the rhizosphere and caulosphere of corn plants. Methodology: Corn plants were selected during three different periods: vegetative growth, flowering and fertilization, grain filling and maturity. Root and stem samples were obtained from each of the plants, they were superficially disinfected, serial dilutions were made and they were planted in nutrient agar medium for isolation. The nitrogen-fixing capacity was evaluated qualitatively on a nitrogen-free medium and quantitatively through the indirect ammonium ion titration method. Results: 70 bacterial isolates were obtained, of which 14 presented positive nitrogen-fixing activity in vitro. Only isolates RB14, RC12, CB1 and CC3 presented quantifiable ammonium ion concentrations, with values of 1.081 mg/L, 0.546 mg/L, 0.54 mg/L and 0.163 mg/L of released ammonium, respectively. According to the macroscopic and microscopic characteristics observed, the microorganisms that presented nitrogen fixing capacity showed a morphological similarity to the genera Bacillus sp, Pseudomonas sp and Azotobacter sp. Conclusions: These isolates can be used as an alternative to the use of chemical fertilizers since they showed a high nitrogen fixation potential in vitro.
Downloads
141
References
Alcarraz-Curi, M., Heredia-Jiménez, V. y Julián-Ibarra, J.P. (2019). Cepas bacterianas nativas con actividades promotoras del crecimiento vegetal aisladas de la rizósfera de Coffea spp. en Pichanaqui, Perú. Biotecnología Vegetal, 19 (4), 285-295.
Ariza-Rodríguez, S., González-Murillo, O. y López-Sánchez, J. (2020). Evaluación de fijadores biológicos de nitrógeno
libres sobre el crecimiento de gramíneas en suelo degradado. Rev. Colomb. Biotecnol., 22(1), 87-97. https://doi.org/10.15446/rev.colomb.biote.v22n1.78019
Bellenger, J.P., Darnajoux, R., Zhang, X., & Kraepiel, A.M.L. (2020). Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: A review. Biogeochemistry, 149 (1), 53-73. https://doi.org/10.1007/s10533-020-00666-7
Bloch, S.E., Clark, R., Gottlieb, S.S., Wood, L.K., Shah, N., Mak, S.M., Lorigan, J.G., Johnson, J., Davis-Richardson, A.G., Williams, L., McKellar, M., Soriano, D., Petersen, M., Horton, A., Smith, O., Wu, L., Tung, E., Broglie, R., Tamsir, A., & Temme, K. (2020). Biological nitrogen fixation in maize: optimizing nitrogenase expression in a root-associated diazotroph. Journal of Experimental Botany, 71(15), 4591–4603. https://doi.org/10.1093/jxb/eraa176
Calleja-Pinedo, M. y Valenzuela, M.B. (2016). La tortilla como identidad culinaria y producto de consumo global. Región y sociedad, 28(66), 161-194. https://doi.org/10.22198/rys.2016.66.a404
Corral-Lugo, A., Morales-García, Y.E., Pazos-Rojas, L.A., Ramírez-Valverde, A., Martínez-Contreras, R.D. y Muñoz-Rojas, J. (2012). Cuantificación de bacterias cultivables mediante el método de "Goteo en Placa por Sellado (o estampado) Masivo". Revista Colombiana de Biotecnología, 14(2), 147-156.
Dlamini, S.P., Akanmu, A.O., Fadiji, A.E., & Babalola, O.O. (2023). Maize rhizosphere modulates the microbiome diversity and community structure to enhance plant health. Saudi J Biol Sci.,30(1), 1-11. https://doi.org/10.1016/j.sjbs.2022.103499
Emmett, B.D., Buckley, D.H., & Drinkwater, L.E. (2020). Plant growth rate and nitrogen uptake shape rhizosphere bacterial community composition and activity in an agricultural field. New Phytol, 225, 960-973. https://doi.org/10.1111/nph.16171
Fisher, P.J., Petrini, O., & Scott, H.M.L. (1992). The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytologist, 122, 299-305. https://doi.org/10.1111/j.1469-8137.1992.tb04234.x
Galeano-Lobos, M., Retamozo-Giménez, G., Bottino-Fernández, J. y Galeano-Graupera, X. (2022). Rendimiento del cultivo de maíz (Zea Mays) variedad híbrida TNH 0032100 y TNH 0033100, con diferentes niveles de aplicación de nitrógeno. Revista de Investigación en Ciencias Agropecuarias y Desarrollo Rural, 1(1), 1-9.
Gastélum, G. y Rocha, J. (2020). La milpa como modelo para el estudio de la microbiodiversidad e interacciones planta-bacteria. TIP Revista especializada en ciencias químico-biológicas, 23, 1-13. https://doi.org/10.22201/fesz.23958723e.2020.0.254
González, H. y Fuentes, N. (2017). Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista de Ciencias Agrícolas, 34(1), 17-31. https://doi.org/10.22267/rcia.173401.60
Guzmán-Duchen, D. y Montero-Torres, J. (2021). Interacción de bacterias y plantas en la fijación del nitrógeno. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 8(2), 87-101. https://doi.org/10.53287/uyxf4027gf99e
Hernández-Rodríguez, A., Rives-Rodríguez, N., Acebo-Guerrero, Y., Diaz-de la Osa, A., Heydrich-Pérez, M. y Divan-Baldani, V.L. (2014). Potencialidades de las bacterias diazotróficas asociativas en la promoción del crecimiento vegetal y el control de Pyricularia oryzae (Sacc.) en el cultivo del arroz (Oryza sativa L.). Revista de Protección Vegetal, 29(1), 1-10.
Kaštovská, E., Edwards, K., Picek, T., & Santruckova, H. (2015). A larger investment into exudation by competitive versus conservative plants is connected to more coupled plant-microbe N cycling. Biogeochemistry, 122, 47-59. https://doi.org/10.1007/s10533-014-0028-5
Lara-Mantilla, C., Villalba-Anaya, M. y Oviedo-Zumaqué, L.E. (2007). Bacterias fijadoras asimbióticas de nitrógeno de la zona agrícola de San Carlos. Córdoba, Colombia. Revista Colombiana de Biotecnología, 9(2), 6-14.
Li, Y., Wang, C., Wu, J., Zhang, Y., Li, Q., Liu, S., & Gao, Y. (2023). The Effects of Localized Plant–Soil–Microbe Interactions on Soil Nitrogen Cycle in Maize Rhizosphere Soil under Long-Term Fertilizers. Agronomy, 13(8), 1-19. https://doi.org/10.3390/agronomy13082114
Mandic, V., Krnjaja, V., Djordjevic, S., Djordjevic, N., Bijelic, Z., Simic, A., & Dragicevic, V. (2018). Effects of bacterial seed inoculation on microbiological soil status and maize grain yield. Maydica, 63(3), 1–8.
Mascarua-Esparza, M.A., Villa-Gonzalez, R., & Caballero-Mellado, J. (1988). Acetylene reduction and indoleacetic acid production by Azospirillum isolates from Cactaceous plants. Plant Soil, 106, 91–95. https://doi.org/10.1007/BF02371199
Mclnroy, J.A., & Kloepper. (1995). Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant soil, 173, 337-342. https://doi.org/10.1007/BF00011472
Olveira, G. y González-Molero, I. (2016). Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinol Nutr., 63(9), 482-494. https://doi.org/10.1016/j.endonu.2016.07.006
Pedraza-Guevara, M., Idrogo-Vazquez, G. y Pedraza-Guevara, S. (2017). Densidad de siembra y comportamiento agronómico de tres variedades de maíz morado (Zea mayz L.). Revista ECI Perú, 14(1), 20-40. https://doi.org/10.33017/RevECIPeru2017.0003/
Pérez, C.A., Rojas, S.J. y Fuentes, C.J. (2010). Diversidad de bacterias endófitas asociadas a raíces del pasto Colosuana
(Bothriochloa pertusa) en tres localidades del departamento de Sucre, Colombia. Acta Biológica Colombiana, 15(2), 219-228.
Richard, P.O., Adekanmbi, A.O., & Ogunjobi, A.A. (2018). Screening of bacteria isolated from the rhizosphere of maize plant (Zea mays L.) for ammonia production and nitrogen fixation. African Journal of Microbiology Research, 12(34), 829-834. https://doi.org/10.5897/AJMR2018.8957
Stella, M., & Suhaimi, M. (2010). Selection of suitable growth medium for free-living diazotrophs isolated from compost. J. Trop. Agric. and Fd. Sc., 38(2), 211-219.
Sun, W., Shahrajabian, M.H., & Cheng, Q.I. (2021). Nitrogen Fixation and Diazotrophs – A Review. Rom Biotechnol Lett, 26(4), 2834-2845. https://doi.org/10.25083/rbl/26.4/2834-2845
Valdovinos, M. A., Montijo, E., Abreu, A. T., Heller, S., González-Garay, A., Bacarreza, D., Bielsa-Fernández, M.C.,
Bojórquez-Ramosh, F., Bosques-Padillai, A.I., Burguete-Garcíaj, R., Carmona- Sánchezk, A., Consuelo-Sánchezl, E., Coss-Adamea, J.A., Chávez-Barreram, M., de Ariño, J., Flores-Calderóno, O., Gómez-Escuderop, M.S., González-Huezoq, M.E., Icaza-Chávez... & Guarner, F. (2017). Consenso mexicano sobre probióticos en gastroenterología. Revista de Gastroenterología de México, 82(2), 156-178. https://doi.org/10.1016/j.rgmx.2016.08.004
Weatherburn, M.W. (1967). Phenol-Hypochlorite Reaction for Determination of Ammonia. Analytical chemistry, 39(8), 971-974. https://doi.org/10.1021/ac60252a045
Zhu, Y.G., Xiong, C., Wei, Z., Chen, Q.L., Ma, B., Zhou, S.Y., Tan, J., Zhang, L.M., Cui, H-L., & Duan, G.L. (2022). Impacts of
global change on the phyllosphere microbiome. New Phytol, 234, 1977-1986. https://doi.org/10.1111/nph.17928
Downloads
Published
How to Cite
License
Copyright (c) 2025 Rev. iberoam. bioecon. cambio clim.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright © Rev. iberoam. bioecon. climate change (Graduate School and UNAN-León, School of Agricultural and Veterinary Sciences / Department of Agroecology / Center for Research in Bioeconomy and Climate Cahnge (CRByCC).
