Nitrogen fixation by indirect titration of ammonium ion of bacteria isolated from rhizosphere and caulosphere of maize plants (Zea mays L.)

Authors

  • L. A. Reyes-Nava University of Guadalajara, Southern University Center, AV. Enrique Arreola Silva No. 883, Colonia Centro. Guzman City, Jalisco. Mexico. Zip code 49000 https://orcid.org/0000-0001-9828-7430
  • J. E. Pliego-Sandoval University of Guadalajara, Southern University Center, AV. Enrique Arreola Silva No. 883, Colonia Centro. Guzman City, Jalisco. Mexico. C.P. 49000 https://orcid.org/0000-0001-6899-3641
  • R. Reyes-Bautista National Technological Institute of Mexico/ITS of Purísima del Rincón. Blvd. Del Valle, No. 2301. Guardarayas Neighborhood. C.P. 36425. https://orcid.org/0000-0003-4196-3877
  • L. E. Iñiguez-Muñoz University of Guadalajara, Southern University Center, Enrique Arreola Silva Ave. No. 883, Centro Neighborhood. Mexico City. C.P. 49000. https://orcid.org/0000-0002-4759-6863

DOI:

https://doi.org/10.5377/ribcc.v10i19.19988

Keywords:

Bacillus spp, Pseudomonas spp, Azotobacter spp, ammonium, nitrogen

Abstract

Background: Mexico is one of the main producers, exporters and consumers of corn in the world. For maximum yield of the product, nitrogen fertilizers are supplied as the main source of nutrients. However, their excessive use is creating a contamination problem. Objective: The main objective was to isolate and select nitrogen-fixing bacteria from the rhizosphere and caulosphere of corn plants. Methodology: Corn plants were selected during three different periods: vegetative growth, flowering and fertilization, grain filling and maturity. Root and stem samples were obtained from each of the plants, they were superficially disinfected, serial dilutions were made and they were planted in nutrient agar medium for isolation. The nitrogen-fixing capacity was evaluated qualitatively on a nitrogen-free medium and quantitatively through the indirect ammonium ion titration method. Results: 70 bacterial isolates were obtained, of which 14 presented positive nitrogen-fixing activity in vitro. Only isolates RB14, RC12, CB1 and CC3 presented quantifiable ammonium ion concentrations, with values ​​of 1.081 mg/L, 0.546 mg/L, 0.54 mg/L and 0.163 mg/L of released ammonium, respectively. According to the macroscopic and microscopic characteristics observed, the microorganisms that presented nitrogen fixing capacity showed a morphological similarity to the genera Bacillus sp, Pseudomonas sp and Azotobacter sp. Conclusions: These isolates can be used as an alternative to the use of chemical fertilizers since they showed a high nitrogen fixation potential in vitro.

Downloads

Download data is not yet available.
Abstract
141
PDF (Español (España)) 41

Author Biographies

L. A. Reyes-Nava , University of Guadalajara, Southern University Center, AV. Enrique Arreola Silva No. 883, Colonia Centro. Guzman City, Jalisco. Mexico. Zip code 49000

He holds a PhD in Biotechnology from the National School of Biological Sciences and a Master's degree in Bioprocess Science from the Interdisciplinary Professional Unit of Biotechnology at the National Polytechnic Institute. He holds a degree in Biochemical Engineering from the Acapulco Institute of Technology. He is currently a full-time professor at the Southern University Center of the University of Guadalajara. He has taught in the Biological Systems Engineering and Agrobiotechnology programs.

 

J. E. Pliego-Sandoval , University of Guadalajara, Southern University Center, AV. Enrique Arreola Silva No. 883, Colonia Centro. Guzman City, Jalisco. Mexico. C.P. 49000

He holds a PhD in Biotechnology from the National School of Biological Sciences and a Master's degree in Bioprocess Science from the Interdisciplinary Professional Unit of Biotechnology at the National Polytechnic Institute. He holds a degree in Biochemical Engineering from the Acapulco Institute of Technology. He is currently a full-time professor at the Southern University Center of the University of Guadalajara. He has taught in the Biological Systems Engineering and Agrobiotechnology programs.

R. Reyes-Bautista, National Technological Institute of Mexico/ITS of Purísima del Rincón. Blvd. Del Valle, No. 2301. Guardarayas Neighborhood. C.P. 36425.

A food engineer by profession, he holds a Master's and Doctorate in Biotechnology from the Autonomous Metropolitan University, Iztapalapa Unit, and was awarded two University Merit Medals for achieving the highest grade point average during his graduate studies. He is currently pursuing a specialty in Statistical Methods at the Center for Mathematics Research (CIMAT-Aguascalientes). He currently has active projects linked to the industrial sector to validate a collagen prototype based on the circular economy (funded 2023-2024) and projects involving the use of various protein extracts from beans and amaranth to help prevent chronic degenerative diseases.

L. E. Iñiguez-Muñoz , University of Guadalajara, Southern University Center, Enrique Arreola Silva Ave. No. 883, Centro Neighborhood. Mexico City. C.P. 49000.

Egresada del Doctorado Interinstitucional en Ciencia y
Tecnología en la opción terminal de Procesos Agroindustriales que se ofertó en
el Centro de Investigación y Asistencia en Tecnología del Estado de Jalisco (CIATEJ)
campus Zapopan. Es, además, Maestra en Ciencia y Tecnología en Biotecnología
Productiva por CIATEJ campus Guadalajara e Ing. Agroindustrial por la
Universidad de Guadalajara (UdeG) sede CUAltos. Profesora Investigadora Titular
“A” adscrita al Departamento de Ciencias de la Naturaleza del Centro
Universitario del Sur (CUSur) desde el 2019.

References

Alcarraz-Curi, M., Heredia-Jiménez, V. y Julián-Ibarra, J.P. (2019). Cepas bacterianas nativas con actividades promotoras del crecimiento vegetal aisladas de la rizósfera de Coffea spp. en Pichanaqui, Perú. Biotecnología Vegetal, 19 (4), 285-295.

Ariza-Rodríguez, S., González-Murillo, O. y López-Sánchez, J. (2020). Evaluación de fijadores biológicos de nitrógeno

libres sobre el crecimiento de gramíneas en suelo degradado. Rev. Colomb. Biotecnol., 22(1), 87-97. https://doi.org/10.15446/rev.colomb.biote.v22n1.78019

Bellenger, J.P., Darnajoux, R., Zhang, X., & Kraepiel, A.M.L. (2020). Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: A review. Biogeochemistry, 149 (1), 53-73. https://doi.org/10.1007/s10533-020-00666-7

Bloch, S.E., Clark, R., Gottlieb, S.S., Wood, L.K., Shah, N., Mak, S.M., Lorigan, J.G., Johnson, J., Davis-Richardson, A.G., Williams, L., McKellar, M., Soriano, D., Petersen, M., Horton, A., Smith, O., Wu, L., Tung, E., Broglie, R., Tamsir, A., & Temme, K. (2020). Biological nitrogen fixation in maize: optimizing nitrogenase expression in a root-associated diazotroph. Journal of Experimental Botany, 71(15), 4591–4603. https://doi.org/10.1093/jxb/eraa176

Calleja-Pinedo, M. y Valenzuela, M.B. (2016). La tortilla como identidad culinaria y producto de consumo global. Región y sociedad, 28(66), 161-194. https://doi.org/10.22198/rys.2016.66.a404

Corral-Lugo, A., Morales-García, Y.E., Pazos-Rojas, L.A., Ramírez-Valverde, A., Martínez-Contreras, R.D. y Muñoz-Rojas, J. (2012). Cuantificación de bacterias cultivables mediante el método de "Goteo en Placa por Sellado (o estampado) Masivo". Revista Colombiana de Biotecnología, 14(2), 147-156.

Dlamini, S.P., Akanmu, A.O., Fadiji, A.E., & Babalola, O.O. (2023). Maize rhizosphere modulates the microbiome diversity and community structure to enhance plant health. Saudi J Biol Sci.,30(1), 1-11. https://doi.org/10.1016/j.sjbs.2022.103499

Emmett, B.D., Buckley, D.H., & Drinkwater, L.E. (2020). Plant growth rate and nitrogen uptake shape rhizosphere bacterial community composition and activity in an agricultural field. New Phytol, 225, 960-973. https://doi.org/10.1111/nph.16171

Fisher, P.J., Petrini, O., & Scott, H.M.L. (1992). The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytologist, 122, 299-305. https://doi.org/10.1111/j.1469-8137.1992.tb04234.x

Galeano-Lobos, M., Retamozo-Giménez, G., Bottino-Fernández, J. y Galeano-Graupera, X. (2022). Rendimiento del cultivo de maíz (Zea Mays) variedad híbrida TNH 0032100 y TNH 0033100, con diferentes niveles de aplicación de nitrógeno. Revista de Investigación en Ciencias Agropecuarias y Desarrollo Rural, 1(1), 1-9.

Gastélum, G. y Rocha, J. (2020). La milpa como modelo para el estudio de la microbiodiversidad e interacciones planta-bacteria. TIP Revista especializada en ciencias químico-biológicas, 23, 1-13. https://doi.org/10.22201/fesz.23958723e.2020.0.254

González, H. y Fuentes, N. (2017). Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista de Ciencias Agrícolas, 34(1), 17-31. https://doi.org/10.22267/rcia.173401.60

Guzmán-Duchen, D. y Montero-Torres, J. (2021). Interacción de bacterias y plantas en la fijación del nitrógeno. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 8(2), 87-101. https://doi.org/10.53287/uyxf4027gf99e

Hernández-Rodríguez, A., Rives-Rodríguez, N., Acebo-Guerrero, Y., Diaz-de la Osa, A., Heydrich-Pérez, M. y Divan-Baldani, V.L. (2014). Potencialidades de las bacterias diazotróficas asociativas en la promoción del crecimiento vegetal y el control de Pyricularia oryzae (Sacc.) en el cultivo del arroz (Oryza sativa L.). Revista de Protección Vegetal, 29(1), 1-10.

Kaštovská, E., Edwards, K., Picek, T., & Santruckova, H. (2015). A larger investment into exudation by competitive versus conservative plants is connected to more coupled plant-microbe N cycling. Biogeochemistry, 122, 47-59. https://doi.org/10.1007/s10533-014-0028-5

Lara-Mantilla, C., Villalba-Anaya, M. y Oviedo-Zumaqué, L.E. (2007). Bacterias fijadoras asimbióticas de nitrógeno de la zona agrícola de San Carlos. Córdoba, Colombia. Revista Colombiana de Biotecnología, 9(2), 6-14.

Li, Y., Wang, C., Wu, J., Zhang, Y., Li, Q., Liu, S., & Gao, Y. (2023). The Effects of Localized Plant–Soil–Microbe Interactions on Soil Nitrogen Cycle in Maize Rhizosphere Soil under Long-Term Fertilizers. Agronomy, 13(8), 1-19. https://doi.org/10.3390/agronomy13082114

Mandic, V., Krnjaja, V., Djordjevic, S., Djordjevic, N., Bijelic, Z., Simic, A., & Dragicevic, V. (2018). Effects of bacterial seed inoculation on microbiological soil status and maize grain yield. Maydica, 63(3), 1–8.

Mascarua-Esparza, M.A., Villa-Gonzalez, R., & Caballero-Mellado, J. (1988). Acetylene reduction and indoleacetic acid production by Azospirillum isolates from Cactaceous plants. Plant Soil, 106, 91–95. https://doi.org/10.1007/BF02371199

Mclnroy, J.A., & Kloepper. (1995). Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant soil, 173, 337-342. https://doi.org/10.1007/BF00011472

Olveira, G. y González-Molero, I. (2016). Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinol Nutr., 63(9), 482-494. https://doi.org/10.1016/j.endonu.2016.07.006

Pedraza-Guevara, M., Idrogo-Vazquez, G. y Pedraza-Guevara, S. (2017). Densidad de siembra y comportamiento agronómico de tres variedades de maíz morado (Zea mayz L.). Revista ECI Perú, 14(1), 20-40. https://doi.org/10.33017/RevECIPeru2017.0003/

Pérez, C.A., Rojas, S.J. y Fuentes, C.J. (2010). Diversidad de bacterias endófitas asociadas a raíces del pasto Colosuana

(Bothriochloa pertusa) en tres localidades del departamento de Sucre, Colombia. Acta Biológica Colombiana, 15(2), 219-228.

Richard, P.O., Adekanmbi, A.O., & Ogunjobi, A.A. (2018). Screening of bacteria isolated from the rhizosphere of maize plant (Zea mays L.) for ammonia production and nitrogen fixation. African Journal of Microbiology Research, 12(34), 829-834. https://doi.org/10.5897/AJMR2018.8957

Stella, M., & Suhaimi, M. (2010). Selection of suitable growth medium for free-living diazotrophs isolated from compost. J. Trop. Agric. and Fd. Sc., 38(2), 211-219.

Sun, W., Shahrajabian, M.H., & Cheng, Q.I. (2021). Nitrogen Fixation and Diazotrophs – A Review. Rom Biotechnol Lett, 26(4), 2834-2845. https://doi.org/10.25083/rbl/26.4/2834-2845

Valdovinos, M. A., Montijo, E., Abreu, A. T., Heller, S., González-Garay, A., Bacarreza, D., Bielsa-Fernández, M.C.,

Bojórquez-Ramosh, F., Bosques-Padillai, A.I., Burguete-Garcíaj, R., Carmona- Sánchezk, A., Consuelo-Sánchezl, E., Coss-Adamea, J.A., Chávez-Barreram, M., de Ariño, J., Flores-Calderóno, O., Gómez-Escuderop, M.S., González-Huezoq, M.E., Icaza-Chávez... & Guarner, F. (2017). Consenso mexicano sobre probióticos en gastroenterología. Revista de Gastroenterología de México, 82(2), 156-178. https://doi.org/10.1016/j.rgmx.2016.08.004

Weatherburn, M.W. (1967). Phenol-Hypochlorite Reaction for Determination of Ammonia. Analytical chemistry, 39(8), 971-974. https://doi.org/10.1021/ac60252a045

Zhu, Y.G., Xiong, C., Wei, Z., Chen, Q.L., Ma, B., Zhou, S.Y., Tan, J., Zhang, L.M., Cui, H-L., & Duan, G.L. (2022). Impacts of

global change on the phyllosphere microbiome. New Phytol, 234, 1977-1986. https://doi.org/10.1111/nph.17928

Published

2025-08-09

How to Cite

Reyes-Nava , L. A., Pliego-Sandoval , J. E., Reyes-Bautista, R., & Iñiguez-Muñoz , L. E. (2025). Nitrogen fixation by indirect titration of ammonium ion of bacteria isolated from rhizosphere and caulosphere of maize plants (Zea mays L.). Rev. Iberoam. Bioecon. Cambio Clim., 10(19), 2367–2374. https://doi.org/10.5377/ribcc.v10i19.19988

Issue

Section

Biothecnology Aplication

Categories

Most read articles by the same author(s)

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.