Aislamiento de hongos productores de fosfatasas para la degradación de compuestos organofosforados en aguas contaminadas por pesticidas en cultivos de aguacate
DOI:
https://doi.org/10.5377/ribcc.v10i19.20737Palabras clave:
Microorganismos, Biorremediación, Sostenibilidad agrícola, Efluentes agrícolas, Procesos enzimáticosResumen
Antecedentes: La contaminación del agua ha adquirido una relevancia crítica en los últimos años debido a las crecientes actividades humanas, industriales y agrícolas, que han contribuido significativamente al aumento de los índices de contaminación ambiental. En particular, la agricultura es uno de los sectores que más impacta negativamente en los cuerpos de agua, principalmente por el uso excesivo de pesticidas. Entre estos, los compuestos organofosforados, como el malatión, son ampliamente utilizados en los cultivos de aguacate y representan un riesgo grave para la salud del ecosistema. Objetivo: Este estudio tiene como objetivo aislar microorganismos capaces de producir enzimas para la degradación de contaminantes organofosforados. Metodología: Se emplearon diferentes concentraciones de malatión para aislar microorganismos capaces de crecer en presencia de compuestos organofosforados. Se realizaron análisis tanto cualitativos como cuantitativos para evaluar su capacidad de degradación, mediante la determinación de la actividad fosfatasa producida por las enzimas obtenidas de los microorganismos aislados. Resultado: Se aislaron siete cepas de hongos con la capacidad de proliferar en medios contaminados con organofosforados. Las actividades fosfatasas observadas variaron entre 99.2 U/L y 1160.5 U/L, lo que indica un amplio rango de potencial para la degradación de estos compuestos. Mediante técnicas de micro cultivo se identificaron las cepas, observando que la mayoría compartía características morfológicas con especies del género Aspergillus. Conclusiones: Este hallazgo destaca el potencial de estos hongos productores de fosfatasas como agentes biorremediadores, ofreciendo una solución ecológica para la degradación de compuestos organofosforados en cuerpos de agua contaminados.
Descargas
249
Citas
Alcantar, X., Sandoval, G., Mateos, J., Rodríguez, J. & Camacho, R. (2011, 19-24 de Junio). Búsqueda de hongos termófilos productores de fitasas [Cartel]. XIV Congreso Nacional de Biotecnología y Bioingeniería. Querétaro, México. https://ciatej.repositorioinstitucional.mx/jspui/handle/1023/198
Arias, E., & Piñeros, P. (2008). Aislamiento e identificación de hongos filamentosos de muestras de suelo de los páramos de Guasca y Cruz Verde. lTesis, Pontificia, Universidad Javeriana]. Repositorio javeriana. http://hdl.handle.net/10554/8233
Aristizábal Quintero, M. (2022). Caracterización morfológica y molecular de Aspergillus sección Fumigati, obtenidos del cepario del grupo Biología Celular y Molecular CIB-UdeA en Medellín. [Tesis, Universidad de Antioquía]. https://hdl.handle.net/10495/31866
Aroniadou-Anderjaska, V., Figueiredo, T. H., de Araujo Furtado, M., Pidoplichko, V. I., & Braga, M. F. M. (2023). Mechanisms of Organophosphate Toxicity and the Role of Acetylcholinesterase Inhibition. Toxics, 11(10), Article 866. https://doi.org/10.3390/toxics11100866
Béjar Castillo, V. R., Villanueva, F., León, S. R., Guevara-Granados, J. M., Uribe, A., Vergaray, G., Cuadra, A., & Sabogal, I.
(2019). Molecular identification of Aspergillus fumigatus isolated from patients with invasive aspergillosis. Revista Peruana de Medicina Experimental y Salud Publica, 36(1), 81–86. https://doi.org/10.17843/rpmesp.2019.361.3403
Bhandari, S., Poudel, D. K., Marahatha, R., Dawadi, S., Khadayat, K., Phuyal, S., Shrestha, S., Gaire, S., Basnet, K., Khadka, U., & Parajuli, N. (2021). Microbial enzymes used in bioremediation. Journal of Chemistry, 2021, Article 8849512. https://doi.org/10.1155/2021/8849512
Bustillo, A. E. (2010). Método para cuantificar suspensiones de esporas de hongos y otros organismos. Universidad Nacional Palmira. https://doi.org/10.13140/RG.2.1.3594.5128
Cardoza Ipanaque, J. A. (2019). Especies de Aspergillus de cepas aisladas del aire de la ciudad de Piura - Perú entre julio y octubre del 2017. [Tesis de licenciatura, Universidad Nacional de Piura]. https://alicia.concytec.gob.pe/vufind/
Record/RUMP_8f50582e259848312f24ff649553876e
Dighton, J. (1983). Phosphatase production by mycorrhizal fungi. Tree Root Systems and Their Mycorrhizas, W. Junk Publishers, 71(62), 455–462. https://doi.org/10.1007/978-94-009-6833-2_51
Fiske, C. H., & Subbarow, Y. (1925). The colorimetric determination of phosphorus. The Journal of Biological Chemistry, 66(2), 375–400.
Gómez-Guiñán, Y. (2004). Actividad de las fosfatasas ácidas y alcalinas (extracelulares e intracelulares) en hongos de la rizosfera de Arachis hypogaea (Papiloneaceae). Revista de Biología Tropical, 52(1), 287-295. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442004000100035&lng=en&tlng=es
Hernández-Salazar, A. B., Moreno-Seceña. J. C. & Sandoval -Herazo. L.C. (2017). Tratamiento de aguas residuales industriales en México: Una aproximación a su situación actual y retos por atender Industrial. Revista Internacional de Desarrollo Sustentable, 2(1-2), 75–88. http://www.rinderesu.com/index.php/rinderesu/article/view/27/33
Hernández Ruiz, G. M., Álvarez Orozco, N. A., & Ríos Osorio, L. A. (2017). Biorremediación de organofosforados por hongos y bacterias en suelos agrícolas: Revisión sistemática. Corpoica Ciencia y Tecnología Agropecuaria, 18(1), 139–159. https://doi.org/10.21930/rcta.vol18_num1_art:564
Ibrahim, G., Amin, M. K., Hassan, A. A., & El-Sheikh, E. S. (2015). Identification of pesticides degrading bacteria isolated from Egyptian soil. Zagazig Journal of Agricultural Research, 42, 1129-1143.
Juárez, L. (2020). Evaluación de tres hongos con potencial de biorremediación de gasolina magna en presencia de un polvo sorbente oleofílico (Tesis de licenciatura, CEIB Centro de Investigación en Biotecnología UAEM). 67 pp. http://riaa.uaem.mx/ handle/20.500.12055/1267
Kim, Y.-O., Kim, H.-K., Bae, K.-S., Yu, J.-H., & Oh, T.-K. (1998). Purification and properties of a thermostable phytase from Bacillussp. DS11. Enzyme and Microbial Technology, 22(1), 2–7. https://doi.org/https://doi.org/10.1016/S0141-0229(97)00096-3
Loh, Z. Z., Zaidi, N. S., Yong, E. L., & others. (2022). Current status and future research trends of biofiltration in wastewater treatment: A bibliometric review. Current Pollution Reports, 8, 234–248. https://doi.org/10.1007/s40726-022-00224-9
Maldonado Toro, L. F. (2017). Evaluación de la biodegradación de un insecticida organofosforado en muestras de suelo de cultivo de papa mediante Trichoderma harzianum y Pleurot (Tesis de pregrado, Universidad Colegio Mayor De Cundinamarca). http://dspace.ups.edu.ec/bitstream/123456789/5081/1/UPS-CYT00109.pdf
Mateescu, C., Lungulescu, E. M., & Nicula, N. O. (2024). Effectiveness of biological approaches for removing persistent organic pollutants from wastewater: A mini-review. Microorganisms, 12(8) Article 1632. https://doi.org/10.3390/microorganisms12081632
Monforte García, G., & Cantú Martínez, P. C. (2015). Escenario del agua en México. Revista de investigación en ingeniería e innivación tecnológica, 30(6), Artículo 30. https://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/356
Umamaheswari, S., & Palanimanickam, A. (2016). Prevalence of pesticide degrading bacteria in paddy crop field. Der Pharmacia Lettre, 8(1), 281–295.
Paul, J. S., Tiwari, K. L., & Jadhav, S. K. (2015). Long term preservation of commercial important fungi in glycerol at
4°C. International Journal of Biological Chemistry, 9(2), 79–85. https://doi.org/10.3923/ijbc.2015.79.85
Pliego-Sandoval, J. E., Díaz-Barbosa, A., Reyes-Nava, L. A., Angeles Camacho-Ruiz, M., Iñiguez-Muñoz, L. E., & Pinto-Pérez, O. (2023). Development and Evaluation of a Low-Cost Triglyceride Quantification Enzymatic Biosensor Using an Arduino-Based Microfluidic System. Biosensors, 13(8). Article 826. https://doi.org/10.3390/bios13080826
Qasim, S. S., Shakir, K. A., Al-Shaibani, A. B., & Walsh, M. K. (2017). Optimization of Culture Conditions to Produce Phytase from Aspergillus tubingensis SKA. Food and Nutrition Sciences, 08(07), 733–745. https://doi.org/10.4236/fns.2017.87052
Rasool, S., Rasool, T., & Gani, K. M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. In Chemical Engineering Journal Advances, 11, Article 100301. https://doi.org/10.1016/j.ceja.2022.100301
Santillán, J. Y., & Iribarren, A. M. (2019). Fosfohidrolasas aplicadas en biocatálisis y biorremediación. [Tesis, Universidad Nacional de Quilmes]. Repositorio Institucional Digital de Acceso Abierto de la Universidad Nacional de Quilmes. http://ridaa.unq.edu.ar/handle/20.500.11807/3945
Sapna, & Singh, B. (2014). Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran [corrected]. Applied biochemistry and biotechnology, 173(7), 1885–1895. https://doi.org/10.1007/s12010-014-0974-3
Saborío Cervantes, I. E., Mora Valverde, M., & Durán Monge, M. P. (2019). Intoxicación por organofosforados. Medicina Legal de Costa Rica, 36(1), 110-117
Siddiquee, S. (2017). Slide Culturing of Trichoderma Isolates. In Practical Handbook of the Biology and Molecular Diversity of Trichoderma Species from Tropical Regions. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-64946-7_3
Sivaperumal, P., Kamala, K., & Rajaram, R. (2017). Chapter eight - Bioremediation of industrial waste through enzyme
producing marine microorganisms. In S.-K. Kim & F. Toldrá (Eds.), Advances in food and nutrition research (Vol. 80, pp. 165–179).Academic Press. https://doi.org/10.1016/bs.afnr.2016.10.006
Vargas Zamarripa, D. M., Serafín Muñoz, A. H., Ramírez García, G., Gutiérrez Granados, S., & Noriega Luna, B. (2008). Nanosensores ópticos basados en dispersión Raman de superficie mejorada (SERS) para la determinación de pesticidas organofosforados en aguas contaminadas. http://repositorio.ugto.mx/handle/20.500.12059/5505
Vázquez Montoya, E. L. (2019). Producción de celulasas en fermentación sumergida utilizando microorganismos aislados de Moringa oleifera con potencial aplicación en procesos biotecnológicos. [Tesis, Instituto Politécnico Nacional).
Yuanyuan, H., Renbang, Z., Huiyan, Z., Weihua, L., Jun, L., Mengying, S., & Yang, W. (2017). Biodegradation of
organophosphorous pesticides by two fungi isolated from pesticide contaminated soils. Bangladesh Journal of Botany, 46(3), 1045–1055.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Rev. iberoam. bioecon. cambio clim.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright © Rev. iberoam. bioecon. cambio clim. (Colegio Postgraduados y UNAN-León, Escuela de ciencias agrarias y veterinarias/ Departamento de Agroecología/Centro de Investigación en Bioeconomía y Cambio Climático (CIByCC).