Isolation of phosphatase-producing fungi for the degradation of organophosphorus compounds in water contaminated by pesticides in avocado cultivation

Authors

  • A. L. Castillo-Magaña Southern University Center, Department of Computer Science and Technological Innovation, University of Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico https://orcid.org/0009-0004-0690-4040
  • J. E. Pliego-Sandoval Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, México https://orcid.org/0000-0001-6899-3641
  • L. A. Reyes Nava Southern University Center, Department of Computer Science and Technological Innovation, University of Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico https://orcid.org/0000-0001-9828-7430
  • R. Reyes-Bautista National Institute of Technology of Mexico/ITS of Purísima del Rincón. 2301 Del Valle Blvd., Guardarrayas Neighborhood, Zip Code 36425. Purísima del Rincón, Guanajuato, Mexico. https://orcid.org/0000-0003-4196-3877
  • L. E. Iñiguez-Muñoz Southern University Center, Department of Computer Science and Technological Innovation, University of Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd. Guzmán 49000, Jalisco, Mexico https://orcid.org/0000-0002-4759-6863
  • O. A. Hernández-Aguirre Amtex Corp S.A. de C.V. Plant Address: Km 2 Amomolulco-Ocoyoacac Highway. 52740, Ocoyoacac, State of Mexico, Mexico. https://orcid.org/0000-0003-4669-8283

DOI:

https://doi.org/10.5377/ribcc.v10i19.20737

Keywords:

Microorganisms, Bioremediation, Agricultural sustainability, Agricultural effluents, Enzymatic processes

Abstract

Background: Water pollution has regained critical relevance in recent years due to increasing human, industrial, and agricultural activities, which have significantly increased environmental pollution rates. In particular, agriculture is one of the sectors that most negatively impacts water bodies, mainly due to the excessive use of pesticides. These chemical compounds, especially organophosphates such as malathion, are widely used on avocado crops and represent a severe risk to the ecosystem's health. Objective: This study aimed to isolate microorganisms capable of producing enzymes to degrade organophosphorus contaminants. Methodology: Different concentrations of malathion were used to isolate microorganisms capable of growing in the presence of organophosphorus compounds. Qualitative and quantitative analyses were performed to evaluate their degradation capacity by determining the phosphatase activity produced by the enzymes from the isolated microorganisms. Result: Seven fungal strains that could proliferate in organophosphate-contaminated media were isolated. The observed phosphatase activities ranged from 99.2 U/L to 1160.5 U/L, suggesting a wide range of potential for degradation of these compounds. Microculture techniques identified the strains, revealing that most shared morphological characteristics with species of the genus Aspergillus. Conclusions: This finding highlights the potential of these phosphatase-producing fungi as bioremediation agents, offering an ecological solution for the degradation of organophosphorus compounds in contaminated water bodies.

Downloads

Download data is not yet available.
Abstract
249
PDF (Español (España)) 53

Author Biographies

A. L. Castillo-Magaña, Southern University Center, Department of Computer Science and Technological Innovation, University of Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico

An undergraduate student currently pursuing a degree in Biological Systems Engineering at the University of Guadalajara. He has a particular interest in developing methods for bioremediation of contaminated water.

J. E. Pliego-Sandoval , Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, México

He holds a PhD and Master's degree in Science and Technology in Productive Biotechnology from CIATEJ. He holds a Chemical Engineering degree from the Technological Institute of Toluca.

He is a full-time professor at the University of Guadalajara and coordinator of the Biological Systems Engineering program. He has 12 research projects, 17 indexed scientific articles, one technical book review, two book chapters, seven technological developments, one patent, and five technology transfers.

L. A. Reyes Nava, Southern University Center, Department of Computer Science and Technological Innovation, University of Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico

He holds a PhD in Biotechnology from the National School of Biological Sciences and a Master's degree in Bioprocess Science from the Interdisciplinary Professional Unit of Biotechnology at the National Polytechnic Institute.

His current research interests focus on Microbial Biotechnology and Bioprocesses and the design of tracking and monitoring systems, which include the isolation and characterization of microorganisms of biotechnological interest and the characterization of metabolites produced, such as enzymes, proteins, peptides, bacteriocins, organic acids, among others.

R. Reyes-Bautista, National Institute of Technology of Mexico/ITS of Purísima del Rincón. 2301 Del Valle Blvd., Guardarrayas Neighborhood, Zip Code 36425. Purísima del Rincón, Guanajuato, Mexico.

PhD in Biotechnology, research conducted in biotechnology fields

L. E. Iñiguez-Muñoz, Southern University Center, Department of Computer Science and Technological Innovation, University of Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd. Guzmán 49000, Jalisco, Mexico

She holds a PhD in Science and Technology with a degree in Agroindustrial Processes from the Jalisco State Center for Research and Technology Assistance (CIATEJ). She also holds a Master's degree from CIATEJ and a degree in Agroindustrial Engineering from the University of Guadalajara. She is a Senior Research Professor "A" and has been affiliated with the Department of Natural Sciences at the Southern University Center of the University of Guadalajara since 2019.

O. A. Hernández-Aguirre, Amtex Corp S.A. de C.V. Plant Address: Km 2 Amomolulco-Ocoyoacac Highway. 52740, Ocoyoacac, State of Mexico, Mexico.

Doctor of Chemical Sciences from the Autonomous University of the State of Mexico, Faculty of Chemistry, Toluca, State of Mexico, with a Master's Degree in Environmental Engineering from the Technological Institute of Toluca, Postgraduate and Research Department, Metepec, State of Mexico

References

Alcantar, X., Sandoval, G., Mateos, J., Rodríguez, J. & Camacho, R. (2011, 19-24 de Junio). Búsqueda de hongos termófilos productores de fitasas [Cartel]. XIV Congreso Nacional de Biotecnología y Bioingeniería. Querétaro, México. https://ciatej.repositorioinstitucional.mx/jspui/handle/1023/198

Arias, E., & Piñeros, P. (2008). Aislamiento e identificación de hongos filamentosos de muestras de suelo de los páramos de Guasca y Cruz Verde. lTesis, Pontificia, Universidad Javeriana]. Repositorio javeriana. http://hdl.handle.net/10554/8233

Aristizábal Quintero, M. (2022). Caracterización morfológica y molecular de Aspergillus sección Fumigati, obtenidos del cepario del grupo Biología Celular y Molecular CIB-UdeA en Medellín. [Tesis, Universidad de Antioquía]. https://hdl.handle.net/10495/31866

Aroniadou-Anderjaska, V., Figueiredo, T. H., de Araujo Furtado, M., Pidoplichko, V. I., & Braga, M. F. M. (2023). Mechanisms of Organophosphate Toxicity and the Role of Acetylcholinesterase Inhibition. Toxics, 11(10), Article 866. https://doi.org/10.3390/toxics11100866

Béjar Castillo, V. R., Villanueva, F., León, S. R., Guevara-Granados, J. M., Uribe, A., Vergaray, G., Cuadra, A., & Sabogal, I.

(2019). Molecular identification of Aspergillus fumigatus isolated from patients with invasive aspergillosis. Revista Peruana de Medicina Experimental y Salud Publica, 36(1), 81–86. https://doi.org/10.17843/rpmesp.2019.361.3403

Bhandari, S., Poudel, D. K., Marahatha, R., Dawadi, S., Khadayat, K., Phuyal, S., Shrestha, S., Gaire, S., Basnet, K., Khadka, U., & Parajuli, N. (2021). Microbial enzymes used in bioremediation. Journal of Chemistry, 2021, Article 8849512. https://doi.org/10.1155/2021/8849512

Bustillo, A. E. (2010). Método para cuantificar suspensiones de esporas de hongos y otros organismos. Universidad Nacional Palmira. https://doi.org/10.13140/RG.2.1.3594.5128

Cardoza Ipanaque, J. A. (2019). Especies de Aspergillus de cepas aisladas del aire de la ciudad de Piura - Perú entre julio y octubre del 2017. [Tesis de licenciatura, Universidad Nacional de Piura]. https://alicia.concytec.gob.pe/vufind/

Record/RUMP_8f50582e259848312f24ff649553876e

Dighton, J. (1983). Phosphatase production by mycorrhizal fungi. Tree Root Systems and Their Mycorrhizas, W. Junk Publishers, 71(62), 455–462. https://doi.org/10.1007/978-94-009-6833-2_51

Fiske, C. H., & Subbarow, Y. (1925). The colorimetric determination of phosphorus. The Journal of Biological Chemistry, 66(2), 375–400.

Gómez-Guiñán, Y. (2004). Actividad de las fosfatasas ácidas y alcalinas (extracelulares e intracelulares) en hongos de la rizosfera de Arachis hypogaea (Papiloneaceae). Revista de Biología Tropical, 52(1), 287-295. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442004000100035&lng=en&tlng=es

Hernández-Salazar, A. B., Moreno-Seceña. J. C. & Sandoval -Herazo. L.C. (2017). Tratamiento de aguas residuales industriales en México: Una aproximación a su situación actual y retos por atender Industrial. Revista Internacional de Desarrollo Sustentable, 2(1-2), 75–88. http://www.rinderesu.com/index.php/rinderesu/article/view/27/33

Hernández Ruiz, G. M., Álvarez Orozco, N. A., & Ríos Osorio, L. A. (2017). Biorremediación de organofosforados por hongos y bacterias en suelos agrícolas: Revisión sistemática. Corpoica Ciencia y Tecnología Agropecuaria, 18(1), 139–159. https://doi.org/10.21930/rcta.vol18_num1_art:564

Ibrahim, G., Amin, M. K., Hassan, A. A., & El-Sheikh, E. S. (2015). Identification of pesticides degrading bacteria isolated from Egyptian soil. Zagazig Journal of Agricultural Research, 42, 1129-1143.

Juárez, L. (2020). Evaluación de tres hongos con potencial de biorremediación de gasolina magna en presencia de un polvo sorbente oleofílico (Tesis de licenciatura, CEIB Centro de Investigación en Biotecnología UAEM). 67 pp. http://riaa.uaem.mx/ handle/20.500.12055/1267

Kim, Y.-O., Kim, H.-K., Bae, K.-S., Yu, J.-H., & Oh, T.-K. (1998). Purification and properties of a thermostable phytase from Bacillussp. DS11. Enzyme and Microbial Technology, 22(1), 2–7. https://doi.org/https://doi.org/10.1016/S0141-0229(97)00096-3

Loh, Z. Z., Zaidi, N. S., Yong, E. L., & others. (2022). Current status and future research trends of biofiltration in wastewater treatment: A bibliometric review. Current Pollution Reports, 8, 234–248. https://doi.org/10.1007/s40726-022-00224-9

Maldonado Toro, L. F. (2017). Evaluación de la biodegradación de un insecticida organofosforado en muestras de suelo de cultivo de papa mediante Trichoderma harzianum y Pleurot (Tesis de pregrado, Universidad Colegio Mayor De Cundinamarca). http://dspace.ups.edu.ec/bitstream/123456789/5081/1/UPS-CYT00109.pdf

Mateescu, C., Lungulescu, E. M., & Nicula, N. O. (2024). Effectiveness of biological approaches for removing persistent organic pollutants from wastewater: A mini-review. Microorganisms, 12(8) Article 1632. https://doi.org/10.3390/microorganisms12081632

Monforte García, G., & Cantú Martínez, P. C. (2015). Escenario del agua en México. Revista de investigación en ingeniería e innivación tecnológica, 30(6), Artículo 30. https://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/356

Umamaheswari, S., & Palanimanickam, A. (2016). Prevalence of pesticide degrading bacteria in paddy crop field. Der Pharmacia Lettre, 8(1), 281–295.

Paul, J. S., Tiwari, K. L., & Jadhav, S. K. (2015). Long term preservation of commercial important fungi in glycerol at

4°C. International Journal of Biological Chemistry, 9(2), 79–85. https://doi.org/10.3923/ijbc.2015.79.85

Pliego-Sandoval, J. E., Díaz-Barbosa, A., Reyes-Nava, L. A., Angeles Camacho-Ruiz, M., Iñiguez-Muñoz, L. E., & Pinto-Pérez, O. (2023). Development and Evaluation of a Low-Cost Triglyceride Quantification Enzymatic Biosensor Using an Arduino-Based Microfluidic System. Biosensors, 13(8). Article 826. https://doi.org/10.3390/bios13080826

Qasim, S. S., Shakir, K. A., Al-Shaibani, A. B., & Walsh, M. K. (2017). Optimization of Culture Conditions to Produce Phytase from Aspergillus tubingensis SKA. Food and Nutrition Sciences, 08(07), 733–745. https://doi.org/10.4236/fns.2017.87052

Rasool, S., Rasool, T., & Gani, K. M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. In Chemical Engineering Journal Advances, 11, Article 100301. https://doi.org/10.1016/j.ceja.2022.100301

Santillán, J. Y., & Iribarren, A. M. (2019). Fosfohidrolasas aplicadas en biocatálisis y biorremediación. [Tesis, Universidad Nacional de Quilmes]. Repositorio Institucional Digital de Acceso Abierto de la Universidad Nacional de Quilmes. http://ridaa.unq.edu.ar/handle/20.500.11807/3945

Sapna, & Singh, B. (2014). Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran [corrected]. Applied biochemistry and biotechnology, 173(7), 1885–1895. https://doi.org/10.1007/s12010-014-0974-3

Saborío Cervantes, I. E., Mora Valverde, M., & Durán Monge, M. P. (2019). Intoxicación por organofosforados. Medicina Legal de Costa Rica, 36(1), 110-117

Siddiquee, S. (2017). Slide Culturing of Trichoderma Isolates. In Practical Handbook of the Biology and Molecular Diversity of Trichoderma Species from Tropical Regions. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-64946-7_3

Sivaperumal, P., Kamala, K., & Rajaram, R. (2017). Chapter eight - Bioremediation of industrial waste through enzyme

producing marine microorganisms. In S.-K. Kim & F. Toldrá (Eds.), Advances in food and nutrition research (Vol. 80, pp. 165–179).Academic Press. https://doi.org/10.1016/bs.afnr.2016.10.006

Vargas Zamarripa, D. M., Serafín Muñoz, A. H., Ramírez García, G., Gutiérrez Granados, S., & Noriega Luna, B. (2008). Nanosensores ópticos basados en dispersión Raman de superficie mejorada (SERS) para la determinación de pesticidas organofosforados en aguas contaminadas. http://repositorio.ugto.mx/handle/20.500.12059/5505

Vázquez Montoya, E. L. (2019). Producción de celulasas en fermentación sumergida utilizando microorganismos aislados de Moringa oleifera con potencial aplicación en procesos biotecnológicos. [Tesis, Instituto Politécnico Nacional).

Yuanyuan, H., Renbang, Z., Huiyan, Z., Weihua, L., Jun, L., Mengying, S., & Yang, W. (2017). Biodegradation of

organophosphorous pesticides by two fungi isolated from pesticide contaminated soils. Bangladesh Journal of Botany, 46(3), 1045–1055.

Published

2025-08-12

How to Cite

Castillo-Magaña, A. L., Pliego-Sandoval , J. E., Reyes Nava, L. A., Reyes-Bautista, R., Iñiguez-Muñoz, L. E., & Hernández-Aguirre, O. A. (2025). Isolation of phosphatase-producing fungi for the degradation of organophosphorus compounds in water contaminated by pesticides in avocado cultivation. Rev. Iberoam. Bioecon. Cambio Clim., 10(19). https://doi.org/10.5377/ribcc.v10i19.20737

Issue

Section

Biothecnology Aplication

Similar Articles

<< < 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.