Biochar effects on seedling development of the mandagual tree (Caesalpinia velutina)
DOI:
https://doi.org/10.5377/wani.v1i83.21707Keywords:
plant, plant growth, agricultural production, soilAbstract
Utilizing appropriate substrates in nurseries is a key strategy for the success of forest plantations, as it allows for obtaining high-quality plants for transplanting. The objective of this study was to evaluate the effect of different doses of biochar on the production of mandagual (Caesalpinia velutina) seedlings. Four treatments were developed, comprising different concentrations of biochar in the substrate: soil without biochar (control), 20%, 30%, and 40% biochar, with an experimental population of 320 seedlings. Using Microsoft Excel and InfoStat, an analysis of variance (ANOVA) was applied to determine significant differences between treatments, along with Tukey's test (p≤0.05) and Shapiro-Wilk normality tests. The 20% biochar dose produced the best effects on plant height (11.11%), stem diameter (12%), number of leaves (16.06%), and root length (15.3%). The 30% biochar treatment showed the highest shoot-to-root ratio (10.45), while the 20% treatment yielded the best Dickson index (+55%), superior lignification (+33.82%), and a 35.5% reduction in pest infestations. In conclusion, the 20% biochar dose proved to be the most efficient, as it improves seedling quality and reduces costs by requiring less product. These results show that the addition of biochar has a high potential to optimize the production of mandagual seedlings in the nursery.
Downloads
26
References
Bhat, H. A., Ahmad, K., Ahanger, R. A., Qazi, N. A., Dar, N. A., y Ganie, S.A (2013). Status and symptomatology of Alternaria leaf blight (Alternaria alternata) of gerbera (Gerbera jamisonii) in Kashmir valley. African Journal of Agricultural Research, 8 (9), 819-823. https://www.researchgate.net/publication/323640956_Status_and_symptomatology_of_Alternaria_leaf_blight_Alternaria_alternata_of_Gerbera_Gerbera_jamisonii_in_Kashmir_valley
Bhatt, B., Gupta, S. K., Mukherjee, S., y Kumar, R. (2024). A comprehensive review on biochar against plant pathogens: Current state-of-the-art and future research perspectives. Heliyon, 10(17), 2-14. https://doi.org/10.1016/j.heliyon.2024.e37204
Boerjan, W., Ralph, J., y Baucher, M. (2003). Lignin biosynthesis. Annual review of plant biology, 54, 519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938
Calixtro Gladin, B., y Suarez Dávila, a. E. (2022). Evaluación inicial de la plantación de Brasil blanco (Caesalpinia velutina Britton & Rose Standl), bajo dos distanciamientos, en la Unidad de Experimentación y Validación El Plantel, Masaya, 2022. [Tesis de grado, Universidad Nacional Agraria]. Repositorio institucional. https://repositorio.una.edu.ni/id/eprint/4602
Edenborn, S., Johnson, L., Edenborn, H., Albarran-Jack, M., y Demetrion, L. (2017). Amendment of a hardwood biochar with compost tea: effects on plant growth, insect damage and the functional diversity of soil microbial communities. Biological Agriculture & Horticulture, 34(2), 88–106. https://doi.org/10.1080/01448765.2017.1388847
Gallegos-Cedillo, V. D. (2021). Las características agronómicas de las plantas pueden predecir la calidad y el rendimiento en campo: un análisis bibliométrico. Agronomy, 11(11), 2-32. https://doi.org/10.3390/agronomy11112305
Garcia, M. D. A. (2007, 25-26 de octubre). Importancia de la calidad del plantín forestal. [documento de conferencia]. XXII Jornadas Forestales de Entre Ríos, Concordia. https://repositorio.inta.gob.ar/handle/20.500.12123/21460
González, J., López, R., y Gutiérrez, T. (2020). Efectos del biochar sobre el crecimiento y sobrevivencia de seis especies forestales con potencial uso para la restauración de suelos degradados. [Tesis de grado, Universidad Nacional Autónoma de Nicaragua]. Repositorio institucional. http://repositorio.unan.edu.ni/id/eprint/13060
Ma, G., Mao, H., Bu, Q., Han, L., y Shabbir, A. (2020). Effect of Compound Biochar Substrate on the Root Growth of Cucumber Plug Seedlings. Agronomía, 10 (8), 2-14. https://doi.org/10.3390/agronomy10081080
Iacomino, G., Idbella, M., Laudonia, S., y Vinale, F. (2022). The Suppressive Effects of Biochar on Above- and Belowground Plant Pathogens and Pests: A Review. Plants, 11(22). 2-17. https://doi.org/10.3390/plants11223144
Jin, X., Zhou, X., Wu, F., y Xiang, W. (2023). Biochar Amendment Suppressed Fusarium Wilt and Altered the Rhizosphere Microbial Composition of Tomatoes. Agronomía, 13(7), 2-12. https://doi.org/10.3390/agronomy13071811
Kumar, R., Lamba, J., Adhikari, S., Torbert, A., y Sawadgo, W. (2024, marzo). Application of Biochar in Agricultural Systems. Alabama Cooperative Extension System. https://www.aces.edu/blog/topics/crop-production/application-of-biochar-in-agricultural-systems/
Marjenah, Kiswanto, Purwanti, S., y Sofyan, F. (2016). The effect of biochar, cocopeat and saw dust compost on the growth of two dipterocarps seedlings. Nusantara Bioscience, 8(1), 39-44. https://doi.org/10.13057/nusbiosci/n080108
Mudd, M. (2025). Influence of biochar on rooting and establishment of seedlings [Tesis de maestría, Western Kentucky University]. https://digitalcommons.wku.edu/cgi/viewcontent.cgi?article=4813&context=theses
Narváez Espinoza, E., y Santos Maradiaga, M. I. (2014). Influencia de dos tipos de sustratos y tres tipos de desinfección en el crecimiento y calidad de plantas de Pinus oocarpa (Schiede) producidas en un vivero de San Fernando, Nueva Segovia, Nicaragua [Tesis de grado, Universidad Nacional Agraria]. Repositorio institucional. https://repositorio.una.edu.ni/id/eprint/2738
Ngo Ndoung, O. C., de Figueiredo, C. C., y Gerosa Ramos, M. L. (2021). A scoping review on biochar-based fertilizers: enrichment techniques and agro-environmental application. Heliyon, 7(12), 2-17. https://doi.org/10.1016/j.heliyon.2021.e08473
Noguera, D., Rondón, M., Kam-Rigne, L., Hoyos, V., Patrick, L., Cruz de Carvalho, M. H., y Barot, S. (2010). Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biology and Biochemistry, 42(7), 1017–1027. https://doi.org/10.1016/j.soilbio.2010.03.001
Razaq, M., Salahuddin, Shen, H.-L., Sher, H., y Zhang, P. (2017). Influence of biochar and nitrogen on fine root morphology, physiology, and chemistry of Acer mono. Scientific Reports, 7, 1-11. https://doi.org/10.1038/s41598-017-05721-2
Rodríguez Solís, A., Badilla Valverde, Y., y Moya, R. (2021). Agronomic Effects of Tectona grandis Biochar from Wood Residues on the Growth of Young Cedrela odorata Plants in a Nursery. Agronomy, 11(10), 2-11. https://doi.org/10.3390/agronomy11102079
Silva Gonzaga, M. I., Mackowiak, C., Quintão de Almeida, A., y Tinel de Carvalho Júnior, J. I. (2017). Biocarvão de lodo de esgoto e seu efeito no crescimento e nas características morfológicas de mudas de eucalipto (Eucalyptus grandisW.Hill ex Maiden). Ciencia Florestal, 27(2), 687–695. https://doi.org/10.5902/1980509832067
Smallops. (2023, octubre). Biochar enriquecido con microorganismos. Smallops. https://smallops.eu/biochar-enriquecido-con-microorganismos/
SIRE (2006). Caesalpinea velutina (Briton et Rose) Stanley. http://www.conafor.gob.mx:8080/documentos/docs/13/895Caesalpinea%20velutina.pdf
Torres, A. P., Camberato, D., Lopez, R. G., y Mickelbart, M. (2010). Medición de pH y conductividad eléctrica en sustratos. Purdue University, 1-6. https://www.extension.purdue.edu/extmedia/ho/ho-237-sw.pdf
Wang, C., Alidoust, D., y Yang, X. Y. (2018). Effects of bamboo biochar on soybean root nodulation in multi-elements contaminated soils. Ecotoxicology and Environmental Safety, 150, 62–69. https://doi.org/10.1016/j.ecoenv.2017.12.036
Warner, E. (2021, enero 11). Biochar: The carbon gamechanger. Taking Root. https://takingroot.com/biochar-carbon-gamechanger/
Weatherspark. (2024, julio 20). Clima promedio en Wiwilí, Nicaragua — durante todo el año. Weather Spark. https://es.weatherspark.com/y/14949/Clima-promedio-en-Wiwil%C3%AD-Nicaragua-durante-todo-el-a%C3%B1o
Yu, P., Qin, K., Crosby, K., Ong, K., y Gentry, T. Y. (2024). Biochar reduces containerized pepper blight caused by Phytophthora capsici. Scientific Reports, 14, 1-12. https://doi.org/10.1038/s41598-024-76712-3
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.