Evaluation of the photocatalytic activity of the FN1® coating on ignimbrite (sillar) in Arequipa - Peru
DOI:
https://doi.org/10.5377/nrc.v37i01.18322Keywords:
Photocatalytic Materials, TiO2, IgnimbriteAbstract
The photocatalytic activity of a suspension of commercial titanium dioxide (FN1), deposited on a porous ignimbrite stone, widely used as a construction material in Arequipa-Peru, was evaluated in order to generate surfaces with self-cleaning properties in urban buildings. The suspension was applied on one side of the ignimbrite substrate by two methods: spray-coating and brush-coating. To evaluate that its application does not alter the physical aspect of the ignimbrite substrate surface, the color coordinates were determined by the CieL*a*b* method, after the application of FN1 giving a maximum total variation of 2.49, showing a good visual compatibility of the coating with the ignimbrite surface. The photocatalytic activity was evaluated by using photobleaching tests with the dyes 2,6-dichloroindophenol (DCIP) and methylene blue (AM), under simulated sunlight irradiation. The highest photocatalytic efficiency was obtained with the ignimbrite substrate coated with 3 layers by spraying FN1, which showed a photodegradation of AM and DCIP of 75.07% and 100% at 120 min and 5 min of irradiation, respectively.
Downloads
201
References
Bai, X., Yang, S., Tan, C., Jia, T., Guo, L., Song, W., Jian, M., Zhang, X., Zhang, Z., Wu, L., Yang, H., Li, H., Hao, D., (2022). Synthesis of TiO2 based superhydrophobic coatings for efficient anti-corrosion and self-cleaning on stone building surface. Journal of Cleaner Production, 380(1), 134975.
Bergamonti, L., Predieri, G., Paz, Y., Fornasini, L., Lottici, P.P., Bondioli, F. (2017). Enhanced self-cleaning properties of N-doped TiO2 coating for Cultural Heritage. Microchemical Journal, 133, 1-12.
Binas, V., Papadaki, D., Maggos, Th., Katsanaki, A., Kiriakidis, G. (2018). Study of innovative photocatalytic cement based coatings: The effect of supporting materials. Construction and Building Materials, 168, 923–930.
Calia, A., Lettieri, M., Masieri, M. (2016). Durability assessment of nanostructured TiO2 coatings applied on limestones to enhance building surface with self-cleaning ability. Building and Environment, 110, 1-10.
Chen, J., Poon, C. (2009). Photocatalytic construction and building materials: From fundamentals to applications. Building and Environment, 44(9), 1899–1906.
Crupi, V., Fazio, B., Gessini, A., Kis, Z., La Russa, M. F., Majolino, D., Masciovecchio, C., Ricca, M., Rossi, B., Ruffolo, S. A., Venuti, V. (2018). TiO2–SiO2–PDMS nanocomposite coating with self-cleaning effect for stone material: Finding the optimal amount of TiO2. Construction and Building Materials, 166, 464–471.
Drdácký, M., Lesák, J., Rescic, S., Slížková, Z., Tiano, P., Valach, J. (2012). Standardization of peeling tests for assessing the cohesion and consolidation characteristics of historic stone surfaces. Materials and Structures, 45, 505–520.
García, O., Malaga, K. (2012). Definition of the procedure to determine the suitability and durability of an anti-graffiti product for application on cultural heritage porous materials. Journal of Cultural Heritage, 13(1), 77-82.
Gonzales, V., De La Vera Cruz, P., Guzman, R., Lavalle, H. S., Mayhua, F. M., Chambi, V. N. (2018). Estudio de daños y contaminación atmosférica en los monumentos históricos de la ciudad de Arequipa, Perú. Revista Noctua – Arqueologia e Patrimônio,
Kanth, A.P., Soni, A.K. (2023). Application of nanocomposites for conservation of materials of cultural heritage. Journal of Cultural Heritage, 59, 120–130.
Khannyra, S., Mosquera, M.J., Addou, M., Gil, M.L.A. (2021). Cu-TiO2/SiO2 photocatalysts for concrete-based building materials: Self-cleaning and air de-pollution performance. Construction and Building Materials, 313, 125419.
La Russa, M. F., Ruffolo, S. A., Rovella, N., Belfiore, C. M., Palermo, A. M., Guzzi, M. T., Crisci, G. M. (2012). Multifunctional TiO2 coatings for Cultural Heritage. Progress in Organic Coatings, 74(1), 186-191.
La Russa, M. F., Rovella, N., Alvarez, M., C. Belfiore, M., Pezzinoc, A., Crisci, G. M., Ruffoloa, S. A. (2016). Nano-TiO2 coatings for cultural heritage protection: The role of the binder on hydrophobic and self-cleaning efficacy. Progress in Organic Coatings, 91, 1–8
Luna, M., Delgado, J.J., Romero, I., Montini, T., Almoraima, M.L., Martínez, J., Fornasiero, P., Mosquera, M.J. (2022). Photocatalytic TiO2 nanosheets-SiO2 coatings on concrete and limestone: An enhancement of de-polluting and self-cleaning properties by nanoparticle design. Construction and Building Materials, 338, 127349.
Mills, A., McGrady, M., Wang, J., Hepburn, J. (2008). A Rapid Method of Assessing the Photocatalytic Activity of Thin TiO2 Films Using an Ink Based on the Redox Dye 2,6- Dichloroindophenol. International Journal of Photoenergy, 2008, 6.
Pinho, L., Mosquera, MJ. (2011). Titania–Silica nanocomposite photocatalysts with application in stone self-cleaning. J Phys Chem C, 115(46), 22851–62.
Quagliarini, E., Bondioli, F., Goffredo, G. B., Licciulli, A., Munafò, P. (2012a). Smart surfaces for architectural heritage: Preliminary results about the application of TiO2-based coatings on travertine. Journal of Cultural Heritage, 13(2), 204-209.
Quagliarini, E., Bondioli, F., Goffredo, G. B., Cordoni, C., Munafò, P. (2012b). Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Construction and Building Materials, 37, 51–57.
Sanjurjo, J., Vidal, J. R., Simões, C. A., Fernández, D. (8-10 de octubre 2007). Deterioration of granite ashlars employed in a historic building in the city of a coruna (spain). VII Congreso Iberico de Arqueometría, Madrid, España.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors who publish in Nexo Scientific Journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of the first publication under the license Creative Commons Attribution License, which allows others to share the work with a recognition of the authorship of the work and the initial publication in Nexo Scientific Journal.
- Authors may separately establish additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, in an institutional repository or a book), with the recognition of the initial publication in Nexo Scientific Journal.
- Authors are allowed and encouraged to disseminate their works electronically (for example, in institutional repositories or in their own website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.