Evaluation of the potential of Mimosa pudica for phytoremediation of mining waste soils contaminated with zinc and copper, in the years 2014 and 2019

Authors

DOI:

https://doi.org/10.5377/elhigo.v15i2.21832

Keywords:

Mining waste, zinc, copper, phytoremediation, heavy metals

Abstract

As an alternative solution to the problem of heavy metal contamination in mining waste, this article evaluates the capacity of Mimosa pudica, a native plant of the central region of Nicaragua, to phytoremediate soils contaminated by zinc and copper, from artisanal mining sites in the municipality of Santo Domingo, department of Chontales. The sites were: Plantel La Estrella, evaluated in 2014 on two dates; and Rastra Adonis and Rigoberto Miranda, evaluated in 2019. Plant and rhizosphere soil samples were collected to quantify physicochemical parameters and to determine the concentration of metals of interest. Total metals were determined using the ICP-OES technique and the results for Plantel La Estrella (II Sampling) showed zinc concentrations between 177,756 mg/kg and 437,873 mg/kg, below the maximum permissible value established in the Canadian Guide. However, Plantel La Estrella (I Sampling), Rastra Adonis and Rigoberto Miranda showed values ​​higher than the compared value. For copper, concentrations ranging from 116,273 mg/kg to 252,815 mg/kg were observed at all sites, exceeding the maximum limit established by regulations. When evaluating zinc and copper concentrations, bioaccumulation and translocation were determined in vegetative organs such as roots, stems, leaves, seeds, and flowers, with bioaccumulation and translocation factors greater than one. This demonstrates that the plant has the capacity to tolerate and bioaccumulate these metals, making it suitable for phytoremediation of these soils.

Downloads

Download data is not yet available.
Abstract
20
PDF (Español (España)) 8

References

Aziz, R.A.; Yiwen, M.; Saleh, M.; Salleh, M.N.; Gopinath, S.C.B.; Giap, S.G.E.; Chinni, S.V. & Gobinath, R. (2023). Bioaccumulation and Translocation of Heavy Metals in Paddy (Oryza sativa L.) and Soil in Different Land Use Practices. Sustainability 15, 13426. https://doi.org/10.3390/ su151813426

Aldana G. (2016). Caracterización hidrogeológica en la ciudad de Santo Domingo y sus Alrededores. Trabajo monográfico para optar al título de Ingeniera Geóloga, Departamento de Tecnología, Universidad Nacional Autónoma de Nicaragua. https://repositorio.unan.edu.ni/id/eprint/3732/1/51721.pdf

Beltran, Mayra & Gómez-Rodríguez, Alida. (2016). Biorremediación de metales pesados cadmio (Cd), cromo (Cr) y mercurio (Hg), mecanismos bioquímicos e ingeniería genética: una revisión. Revista Facultad de Ciencias Básicas. 12. 172-197. 10.18359/rfcb.2027.

Cristaldi, A., Conti, G.O., Jho, E.H., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology & Innovation. http://dx.doi.org/10.1016/j.eti.2017.08.002.

Canadian Council of Ministers of the Environment. (2007). Canadian soil quality guidelines for the protection of environmental and human health: Summary tables. Updated. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.

Cahuana, Lizardo, & Aduvire, Osvaldo. (2019). Bioacumulación de metales pesados en tejidos de vegetación acuática y terrestre evaluados en áreas donde existen pasivos ambientales mineros en el Perú. Revista de Medio Ambiente y Mineria, 4(2), 19-36. Recuperado en 10 de diciembre de 2025, de http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2519-53522019000200002&lng=es&tlng=es.

Delgadillo-López, Angélica Evelin, González-Ramírez, César Abelardo, Prieto-García, Francisco, Villagómez-Ibarra, José Roberto, & Acevedo-Sandoval, Otilio. (2011). Fitorremediación: una alternativa para eliminar la contaminación. Tropical and subtropical agroecosystems, 14(2), 597-612. Recuperado en 10 de diciembre de 2025, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-04622011000200002&lng=es&tlng=es.

Giovana Poggere, Amanda Gasparin, Julierme Zimmer Barbosa, George Wellington Melo, Rodrigo Studart Corrêa, Antonio Carlos Vargas Motta. (2023). Soil contamination by copper: Sources, ecological risks, and mitigation strategies in Brazil, Journal of Trace Elements and Minerals. Volume 4. 2023. 100059. ISSN 2773-0506. https://doi.org/10.1016/j.jtemin.2023.100059. https://www.sciencedirect.com/science/article/pii/S2773050623000149)

Google Earth (2025). Imagenes satelitales en modelo virtual.

Guzmán-Morales, A. R., González-Viera, D., Cruz-La Paz, O., Valdés-Carmenate, R., Valdés-Hernández, P. A., Mesa-Rebato, S., & Arteaga-Barrueta, M. (2024). Análisis de un suelo agrícola contaminado por cobalto, plomo y zinc. Revista Ciencias Técnicas Agropecuarias, 33(1), https://cu-id.com/2177/v33n1e04. Recuperado a partir de https://revistas.unah.edu.cu/index.php/rcta/article/view/1842

Huu-Tap Van, Van Hung Hoang, Luong Thi Quynh Nga, Van Quang Nguyen, Effects of Zn pollution on soil: Pollution sources, impacts and solutions, Results in Surfaces and Interfaces. (2024). Volume 17.100360. ISSN 2666-8459, https://doi.org/10.1016/j.rsurfi.2024.100360.

Iqbal Khan Z., Safdar H., Ahmad K., Wajid K., Bashir H., Ugulu I. and Dogan Y. (2020). Copper bioaccumulation and translocation in forages grown in soil irrigated with sewage water. Pak. J. Bot., 52(1): 111-119. DOI: http://dx.doi.org/10.30848/PJB2020-1.

Instituto Nicaragüense de Estudios Territoriales INETER (2025). Mapa de la división política administrativa de Nicaragua. https://www.ineter.gob.ni/mapa/pub/nicaragua/DPA.html

Jara-Peña, Enoc, Gómez, José, Montoya, Haydeé, Chanco, Magda, Mariano, Mauro, & Cano, Noema. (2014). Capacidad fitorremediadora de cinco especies altoandinas de suelos contaminados con metales pesados. Revista Peruana de Biología, 21(2), 145-154. https://doi.org/10.15381/rpb.v21i2.9817

Cahuana, Lizardo, & Aduvire, Osvaldo. (2019). Bioacumulación de metales pesados en tejidos de vegetación acuática y terrestre evaluados en áreas donde existen pasivos ambientales mineros en el Perú. Revista de Medio Ambiente y Mineria, 4(2), 19-36. Recuperado en 10 de diciembre de 2025, de http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2519-53522019000200002&lng=es&tlng=es.

León Morales, Janet María; Sepúlveda Jiménez, Gabriela. 2012. El daño por oxidación causado por cobre y la respuesta antioxidante de las plantas. Interciencia, Asociación Interciencia Caracas, Venezuela. vol. 37, núm. 11, noviembre, 2012, pp. 805-811. ISSN: 0378-1844. https://www.redalyc.org/pdf/339/33925550003.pdf

López M. y Morales O. (2022). Fitorremediación de suelos contaminados por metales pesados: una revisión. Revista de Ciencia y Tecnología El Higo. Vol. 12. No. 02, pp. 15-28/ diciembre 2022. ISSN-E: 2413-1911. DOI: https://doi.org/10.5377/elhigo.v12i2.15197

Loyde De La Cruz, Luis Antonio, González Méndez, Blanca, Cruz Avalos, Ana Martha, & Loredo Portales, René. (2022). Suelos agrícolas y metales pesados, una relación tóxica que se puede remediar. Epistemus (Sonora), 16(33), 93-98. Epub 19 de mayo de 2023.https://doi.org/10.36790/epistemus.v16i33.228

Mganga N. (2014). The Potential of Bioaccumulation and Translocation of Heavy Metals in Plant Species Growing around the Tailing Dam in Tanzania. International Journal of Science and Technology Volume 3 No. 1. ISSN: 2049-7318.

Ministerio de Energía y Minas de Nicaragua MEM (2025). Reporte de indicadores mineros al 21 de marzo 2025. https://www.mem.gob.ni/wp-content/uploads/2025/03/Web-INDICADORES-MINEROS-AL-21-DE-MARZO-2025.pdf

Prieto Méndez, Judith; González Ramírez, César A.; Román Gutiérrez, Alma D.; Prieto García, Francisco

Rodríguez-Eugenio, N., McLaughlin, M. & Pennock, D. 2019. La contaminación del suelo: una realidad oculta. Roma, FAO.

Shah, V., & Daverey, A. (2020). Environmental Technology & Innovation Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology & Innovation, 18, 100774. https://doi.org/10.1016/j.eti.2020.100774.

U.S. EPA. 1994. “Method 2007: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry,” Revision 4.4. Cincinnati, OH.

Vinod Kumar, Shevita Pandita, Gagan Preet Singh Sidhu, Anket Sharma, Kanika Khanna, Parminder Kaur, Aditi Shreeya Bali, Raj Setia. (2021). Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review, Chemosphere, Volume 262, 127810, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2020.127810.

Zarcinas, B. A., Cartwright, B. & Spouncer, L.R. (1987). Nitric acid digestion and multi‐element analysis of plant material by inductively coupled plasma spectrometry. tandfonline, 131-146. https://doi.org/10.1080/00103628709367806.

Published

2025-12-19

How to Cite

López Hernández , M. E., Morales Hernández, O. E., & Lacayo Romero, M. L. (2025). Evaluation of the potential of Mimosa pudica for phytoremediation of mining waste soils contaminated with zinc and copper, in the years 2014 and 2019. Journal of Science and Technology El Higo, 15(2), 130–141. https://doi.org/10.5377/elhigo.v15i2.21832

Issue

Section

Scientific articles

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.