Comparative evaluation of cooling technologies and sodium hypochlorite treatments to extend the shelf life of tomato under tropical conditions

Authors

DOI:

https://doi.org/10.5377/elhigo.v15i2.21728

Keywords:

postharvest, cooling chambers, sodium hypochlorite, shelf life, quality

Abstract

Tomato (Solanum lycopersicum L.) is a horticulturally important crop whose shelf life is significantly reduced under tropical conditions due to rapid ripening and the incidence of postharvest pathogens. To address this limitation, the performance of two cooling systems, ColdStore, an evaporative chamber, and Coolbot®, an adapted cold room, was evaluated in comparison with ambient storage, in combination with sodium hypochlorite dips applied every three and five days. The experiment followed a bifactorial randomized complete block design, assessing temperature, color, firmness, °Brix, disease incidence, and storage duration. Coolbot® maintained average conditions of 12.5 ± 2.05 °C and 72.0 ± 6.63% RH, with a mean firmness of 1.39 kg·cm⁻², preserving commercial quality up to day 21. ColdStore operated at 23.06 ± 2.13 °C and 84.7 ± 10.6% RH, with a mean firmness of 0.91 kg·cm⁻², maintaining commercial quality up to day 15; both systems outperformed ambient storage (25.1 ± 3.52 °C and 60.8 ± 13.8% RH; 0.36 kg·cm⁻²). Soluble solids content remained stable at approximately 3.5 °Brix. Although sodium hypochlorite dips did not result in statistically significant differences, their combination with the cooling systems reduced fruit discard due to decay to 1.51–3.44% in Coolbot® and ColdStore, compared with 10.08% under ambient storage. Overall, Coolbot® combined with dips every three days proved to be the most efficient strategy for extending shelf life and preserving tomato visual quality, while ColdStore also emerged as a viable, lower-cost alternative for contexts with limited access to energy.

Downloads

Download data is not yet available.
Abstract
19
Pdf (Español (España)) 12

References

Acedo Jr, A., Vanndy, M., Buntong, B., & Weinberger, K. (2009). Effects of chlorine and bicarbonate wash on fruit decay and shelf life of four tomato cultivars stored in simple evaporative coolers. ISHS Acta Horticulturae, 837, 217-222. https://doi.org/https://doi.org/10.17660/ActaHortic.2009.837.28

Al-Dairi, M., & Pathare, P. (2021). Effect of Storage Conditions on Postharvest Quality of Tomatoes: A Case Study at Market-Level. Journal of Agricultural and Marine Sciences. https://doi.org/https://doi.org/10.24200/JAMS.VOL26ISS1PP13-20

Al-Gaadi, K. A., Z., A. M., T., E., A. A., M, A. K., R, M., & Edrris, M. K. (2024). Impact of Storage Conditions on Fruit Color, Firmness and Total Soluble Solids of Hydroponic Tomatoes Grown at Different Salinity Levels. Applied Sciences, 14(14), 6315. https://doi.org/https://doi.org/10.3390/app14146315

Ambuko, J., Karithi, M., Hutchinson, M., Owino, W., Wasilwa, L., & Hansen , B. (2017). The CoolbotTM: a low-cost cold storage alternative for smallholders in developing countries. The 1st All Africa Post Harvest Congress & Exhibition, Reducing food losses and waste: sustainable solutions for Africa, 28th-31st March 2017, Nairobi, Kenya. Conference Proceedings. Nairobi, Kenya.: Department of Plant Science & Crop Protection, University of Nairobi. https://doi.org/https://doi.org/10.5539/jfr.v7n5p7

Arah, I. K., Ahorbo, G. K., Anku, E. K., Kumah, ,. E., & Amaglo, H. (2016). Postharvest Handling Practices and Treatment Methods for Tomato Handlers in Developing Countries: A Mini Review. Advances in Agricultura(6436945). https://doi.org/https://doi.org/10.1155/2016/6436945

Avecillas Ureña, L. C. (2015). Análisis comparativo de dos tecnologías de enfriamiento evaporativo cero energía, dirigido a pequeños productores hortofrutícolas. Escuela Agrícola Panamericana, Zamorano. https://doi.org/https://bdigital.zamorano.edu/server/api/core/bitstreams/26c8cbdc-eeeb-408e-99dd-2b0703b25c67/content

Bartz , J., Vallad, G., & Sargent, S. (2020). Guide to Identifying and Controlling Postharvest Tomato Diseases in Florida. HS866/HS131, rev 9/2020. EDIS, 2020(5). https://doi.org/https://doi.org/10.32473/edis-hs131-2020

Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63(1), 129-140. https://doi.org/https://doi.org/10.1016/j.postharvbio.2011.05.016

Brummell, D. A., & Harpster, M. H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant molecular biology, 47(1-2), 311-340. https://doi.org/https://pubmed.ncbi.nlm.nih.gov/11554479/

CREE, C. R. (2025). RESUMEN INFORME DE AJUSTE TARIFARIO TERCER TRIMESTRE 2025. Gobierno de Honduras. Recuperado. Gobierno de Honduras. Recuperado: https://www.cree.gob.hn/informe-trimestral-de-tarifas/

Díaz Rubio, S. (2017). Estudio costo-beneficio de la utilización del cuarto frío con tecnología Cool Bot en el almacenamiento de chile morrón (Capsicum annuum) en Zamorano, Honduras. Escuela Agrícola Panamericana, Zamorano. https://bdigital.zamorano.edu/server/api/core/bitstreams/26c8cbdc-eeeb-408e-99dd-2b0703b25c67/content

Dubey, N. (2011). Use of coolbot technology for construction of low cost-low capacity cold storages on farms. Amity International Centre for Post Harvest Technology and Cold chain Management, Amity University Uttar Pradesh, Noida. https://www.fruits.soton.ac.uk/files/2011/12/Use-of-Coolbot-Technology-for-Construction-of-Low-Cost-Low-Capacity-Cold-Storages-on-Farms_-Dr-Neeru-Dubey.pdf

FAO. (2019). The State of Food and Agriculture. Moving forward on food loss and waste reduction. Roma: Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/server/api/core/bitstreams/11f9288f-dc78-4171-8d02-92235b8d7dc7/content

Gemida, J., Ardeña, R., & Pillones, C. (2023). Shelf life of tomato in different post-harvest treatments. International Research Journal of Science, Technology, Education, and Management, 3(2), 41-29. https://doi.org/https://doi.org/10.5281/zenodo.8139508

Ghebreyesus, M., Shishay, B., Arefaine, A., Abraham, M., Gebrehiwet, R., Ahmad, J., & Naqvi, D. (2024). Designing and fabrication of evaporative cooler for enhancing tomato shelf life. Journal of Eco-Friendly Agriculture, 19(2), 464-470. https://doi.org/https://doi.org/10.48165/jefa.2024.19.02.38

Gil, M. I., Selma, M. V., López Gálvez, F., & Allende, A. (2009). Fresh-cut product sanitation and wash water disinfection: Problems and solutions. International Journal of Food Microbiology, 134(1-2), 37-45. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2009.05.021

Horticulture Innovation Lab. (2025). CoolBot Cold Storage for Small-Scale Farms. University of California, Davis. https://horticulture.ucdavis.edu/coolbot

Kader, A. (2008). Flavor quality of fruits and vegetables. Journal of the Science of Food and Agriculture., 88(11), 1863-1868. https://doi.org/10.1002/jsfa.3293

Kader, A. A. (2002). Postharvest Technology of Horticultural Crops. University of California Agriculture and Natural Resources. https://books.google.hn/books/about/Postharvest_Technology_of_Horticultural.html?id=O1zhx2OWftQC&redir_esc=y

Kader, A., & Cantwell , M. (2010). Produce Quality Rating Scales & Color Charts (2nd ed.). University of California, Agriculture and Natural Resources.

Kathimba, F. K., Kimani, P. M., Narla, R. D., & Kiirika, L. M. (2022). Effect of storage temperature on fruit firmness and weight loss of nine tomato lines. African Journal of Plant Science, 16(10), 276-284. https://doi.org/https://academicjournals.org/journal/AJPS/article-full-text-pdf/79AAA1E70042

Kefas Bwade, E., Aliyu, B., & Tashiwa, Y. I. (2024). Tomato postharvest loss: A five-year comprehensive review of treatments, optimization, and environmental influences. Systematic Literature Review and Meta-Analysis Journal, 5(3), 1-16. https://doi.org/https://doi.org/10.54480/slr-m.v5i3.69

Lana, M., Tijskens, L., & O.van Kooten. (2005). Effects of storage temperature and fruit ripening on firmness of fresh cut tomatoes. Postharvest Biology and Technology, 35(1), 87-95. https://doi.org/https://doi.org/10.1016/j.postharvbio.2004.07.001

Li, X., Huang , H., Zhang , L., & Zhao, L. (2025). Effect of Postharvest Storage Temperature and Duration on Tomato Fruit Quality. Foods, 6(14), 1002. https://doi.org/https://doi.org/10.3390/foods14061002

López-Gálvez, F., Gil, M. I., Truchado, P., Selma, M. V., & Allende, A. (2010). Cross-contamination of fresh-cut lettuce after a short term exposure during pre washing cannot be controlled after subsequent washing with chlorine dioxide or sodium hypochlorite. Food Microbiology, 27(2), 199-204. https://doi.org/https://doi.org/10.1016/j.fm.2009.09.009

Majubwa, R., Msogoya, T., Mtui, H., & Shango, A. (2021). CoolBot Coldroom Technology Enhance Postharvest Quality and Shelf-life of Tomato (Solanum lycopersicum L.) Fruits. Tanzania Journal of Agricultural Sciences, 11-21. https://www.ajol.info/index.php/tjags/article/view/234414/221416

Mani, V. P., Abdul-Rahaman, A., Nimbare, A. C., Buonamwen, Y. I., Musah, K., Abdul-Wahab, S., & & Ghulam, K. (2023). Effects of postharvest dipping of sodium hypochlorite and hydro-cooling on the quality of ‘Petomech’ tomato fruits. Journal of Postharvest Technology, 11(4), 37-48. https://jpht.in/MenuscriptFile/e438e558-4a70-4839-a866-358589abcc0f.pdf

Manyoo, F., Ambuko, J., Hutchinson, M., & Kamanula, J. (2018). Effectiveness of evaporative cooling technologies to preserve the postharvest quality of tomato. International Journal of Agronomy and Agricultural Research (IJAAR), 13(2), 114-127. https://doi.org/https://www.researchgate.net/publication/337167417_Effectiveness_of_evaporative_cooling_technologies_to_preserve_the_postharvest_quality_of_tomato_International_Journal_of_Agronomy_and_Agricultural_Research_IJAAR

Martínez Romero, D., Bailén, G., Serrano, M., Guillén, F., Valverde, J. M., Zapata, P., . . . Valero, D. (2007). Tools to Maintain Postharvest Fruit and Vegetable Quality through the Inhibition of Ethylene Action: A Review. Critical Reviews in Food Science and Nutrition, 47(6), 543-560. https://doi.org/https://doi.org/10.1080/10408390600846390

Mishra, V., Abrol Shyam, G., & Dubey, N. (2018). Sodium and Calcium Hypochlorite as Postharvest Disinfectants for Fruits and Vegetables. Department of Post Harvest Technology, College of Horticulture, Banda University of Agriculture & Technology, Banda, India. https://doi.org/https://doi.org/10.1016/B978-0-12-812698-1.00014-5

Nkolisa, N., Magwaza, L. S., Workneh, T. S., & Chimphango, A. (2018). Evaluating evaporative cooling system as an energy- free and cost- effective method for postharvest storage of tomatoes (Solanum lycopersicum L.) for smallholder farmers. Scientia Horticulturae, 241(0304-4238), 131-143. https://doi.org/https://doi.org/10.1016/j.scienta.2018.06.079

OpenAI. (2024). ChatGPT (versión GPT-5.1). OpenAI: https://www.openai.com/chatgpt

Pico Poma, J. P., Saravia Guevara, D. A., Rentería Chimbo, A. E., & Landivar Valverde, M. D. (2023). El manejo postcosecha de hortalizas para determinar su incidencia en la conservación. Revista Electrónica Multidisciplinaria de Ciencias Básicas, Ingeniería y Arquitectura, 5(8), 120-135. https://doi.org/https://www.researchgate.net/publication/370801146_El_manejo_postcosecha_de_hortalizas_para_determinar_su_incidencia_en_la_conservacion_Post-harvest_handling_of_vegetables_to_determine_their_impact_on_conservation

Salas, M. M. (2013). Manual Técnico de desinfección poscosecha. Comité Estatal de Sanidad Vegetal de BAja California. https://doi.org/https://www.academia.edu/14389780/Manuallt%C3%A9cnicoode_desinfecci%C3%B3nnposcosecha_ComiteeEstatalldeeSanidaddVegetalldeeBajaaCalifornia_ProgramaadeeInocuidad_Alimentaria

Saltveit, M. E. (2019). Respiratory Metabolism. In E. M. Yahia, Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 73-91). Woodhead Publishing. https://books.google.hn/books?id=lMlaDwAAQBAJ&printsec=copyright&hl=es#v=onepage&q&f=false

Shankar, S., Mohanty, A., DeEll, J., Carter, K., Lenz, R., & Misra, M. (2024). Advances in antimicrobial techniques to reduce postharvest loss of fresh fruit by microbial reduction. npj Sustainable Agriculture, 2(25). https://doi.org/https://doi.org/10.1038/s44264-024-00029-x

Sibanda, S., & Workneh, T. S. (2019). Effects of indirect air cooling combined with direct evaporative cooling on the quality of stored tomato fruit. CYTA – Journal of Food, 17(1), 603-612. https://doi.org/https://doi.org/10.1080/19476337.2019.1622595

Stone, H., & Sidel, J. (2004). Sensory Evaluation Practices (3ra ed.). Elsevier Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-672690-9.X5000-8

Thole, V., Vain, P., & Martin, C. (2021). Effect of Elevated Temperature on Tomato Post-Harvest Properties. Plants. Plants (Basel), 1(10), 2359. https://doi.org/10.3390/plants10112359

Vicente, A. R., Saladié, M., Rose, J. K., & Labavitch, J. M. (2007). The linkage between cell wall metabolism and fruit softening: looking to the future. Sicence of Food and Agriculture, 87(8), 1435-1448. https://doi.org/ https://doi.org/10.1002/jsfa.2837

Published

2025-12-19

How to Cite

Menjivar Polanco, R. J., & López Monte , J. (2025). Comparative evaluation of cooling technologies and sodium hypochlorite treatments to extend the shelf life of tomato under tropical conditions. Journal of Science and Technology El Higo, 15(2), 31–55. https://doi.org/10.5377/elhigo.v15i2.21728

Issue

Section

Scientific articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.