AUTOMATIC WOUND DETECTION AND MEASUREMENT SYSTEM IMPLEMENTED IN YOLOV7, FOR FUTURE WOUND HEALING APPLICATION

Authors

  • Juan Alberto Antonio Velázquez Tecnológico Nacional de México (TecNM): Tecnológico de Estudios Superiores de Jocotitlán, Carretera Toluca-Atlacomulco KM 44.8 Ejido de San Juan y, San Agustin, 50700 Cdad. de Jocotitlán, Méx.
  • Adriana Reyes-Nava Tecnológico Nacional de México (TecNM): Tecnológico de Estudios Superiores de Jocotitlán, Carretera Toluca-Atlacomulco KM 44.8 Ejido de San Juan y, San Agustin, 50700 Cdad. de Jocotitlán, Méx
  • Marcos-C González-Domínguez Tecnológico Nacional de México (TecNM): Tecnológico de Estudios Superiores de Jocotitlán, Carretera Toluca-Atlacomulco KM 44.8 Ejido de San Juan y, San Agustin, 50700 Cdad. de Jocotitlán, Méx.
  • Roberto Alejo-Eleuterio Tecnológico Nacional de México (TecNM): Instituto Tecnológico de Toluca, Av Tecnológico 100-s/n, Agrícola, 52149 Metepec, Méx
  • Marlon David González-Ramírez Instituto Politécnico Nacional (IPN), Centro de Innovación y Desarrollo Tecnológico en Cómputo, CIDETEC. Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, C.P. 07738, Ciudad de México¿
  • Elizabet García-Álcantara Tecnológico Nacional de México (TecNM): Tecnológico de Estudios Superiores de Jocotitlán, Carretera Toluca-Atlacomulco KM 44.8 Ejido de San Juan y, San Agustin, 50700 Cdad. de Jocotitlán, Méx.

DOI:

https://doi.org/10.5377/nexo.v38i01.20588

Keywords:

Wound-detection, YOLOv7, scrapes, cuts-and-bruises

Abstract

Chronic and superficial wounds significantly impact the quality of life of patients, particularly those with diabetes and the elderly, requiring constant monitoring to prevent complications. This study proposes a deep learning method based on YOLOv7 for the automatic detection of superficial wounds (cuts, scrapes, and bruises) in images, as the first stage of a robotic system equipped with a helium plasma device to assist in healing the detected wounds. Using a dataset of 266 images of superficial wounds, the model was trained over 100 epochs, achieving an average precision of 93% (mAP@0.5). The results demonstrate promising performance in wound localization, regardless of the background, with an F1-score of 0.90. This non-invasive approach has the potential to enhance medical care by enabling fast and accurate detection, laying the groundwork for the automation of wound healing treatments

Downloads

Download data is not yet available.
Abstract
501
PDF (Español (España)) 187

References

La Gaceta. Diario Oficial. (2013). Decreto 01-2013. Reglamento de la Ley No. 822, Ley de Concertación Tributaria. Managua: La Gaceta.

Casas, L., Treuillet, S., Valencia, B., Llanos, A., & Castañeda Jr, B. (2015). Low-cost uncalibrated video-based tool for tridimensional reconstruction oriented to assessment of chronic wounds. Proceedings Volume 9287, 10th International Symposium on Medical Information Processing and Analysis, 9287(928711).

Lin, C., Phan, X., Thien, P., Anthony Meng Huat, T., Hung Leng, K., Jiajun, L., Muneaki, M. (2020). Sewing up the wound : a robotic suturing system for flexible endoscopy. IEEE Robotics & Automation Magazine, in press, 1-8.

Lindholm, C., & Richard, S. (2016). Wound management for the 21st century: combining effectiveness and efficiency. International Wound Journal, 29(2), 84-92.

Chino, D. Y., Scabora, L. C., Cazzolato, M. T., Jorge, A. E., Traina-Jr, C., & Traina, A. J. (2020). Segmenting skin ulcers and measuring the wound area using deep convolutional networks. Computer Methods and Programs in Biomedicine, 191(105376).

Liu, J. (2016). A new way of repairing special wounds. Heliyon, 9(5).

Aldughayfiq, B., Ashfaq, F., Jhanjhi, N. Z., & Hamayun, M. (2023). YOLO-Based Deep Learning Model for Pressure Ulcer Detection and Classification. Aldughayfiq, 11(9), 1222.

Blanco, G., Traina Jr, C., & Azevedo-Marques, P. (2020). A superpixel-driven deep learning approach for the analysis of dermatological wounds. Computer methods and programs in biomedicine, 183(105079).

Baca, G. (2007). Fundamentos de Ingeniería Económica (4a. ed.). México D.F.: McGraw-Hill.

Bates, J., McCreath, B. M., & Harputlu, H. E. (2019). Reliability of the Bates‐Jensen wound assessment tool for pressure injury assessment: The pressure ulcer detection study. Wound Repair and Regeneration, 27(4), 386-395.

Bhardwaj, N., Chouhan, D., & Mandal , B. B. (2017). Tissue Engineered Skin and Wound Healing: Current Strategies and Future Directions. Bentham Science, 3455 - 3482.

Falanga, V., Rivkah Isseroff, R., M. Soulika, A., Romanelli, M., Margolis, D., Kapp, S., Harding , K. (2022). Chronic wounds. Nature Reviews Disease Primers, 8(50).

Filko, D., Cupec, R., & Nyarko, E. K. (2016). Detection, reconstruction and segmentation of chronic wounds using Kinect v2 sensor. International Conference On Medical Imaging Understanding and Analysis 2016, MIUA 2016, 6- 8 July 2016, Loughborough, UK. Loughborough, UK: Science Direct.

Foltynski, P., Ladyzynski, P., Ciechanowska, A., Migalska-Musial, K., Judzewicz, G., & Sabalinska, S. (2015). Wound Area Measurement with Digital Planimetry: Improved Accuracy and Precision with Calibration Based on 2 Rulers. PloS one, 10(8), e0134622.

Foltynski, P., & Ladyzynski, P. (2023). Internet service for wound area measurement using digital planimetry with adaptive calibration and image segmentation with deep convolutional neural networks. Biocybernetics and Biomedical Engineering, 43(1), 17-29.

García‐Fernández, F. P., Soldevilla‐Agreda, J. J., Rodriguez‐Palma, M., & Pancorbo‐Hidalgo, P. L. (2022). Skin injuries associated with severe life‐threatening situations: A new conceptual framework. Journal of Nursing Scholarship, 54(1), 72-80.

Garcia-Alcantara, E., Lopez-Callejas, R., Serment-Guerrero, J., Peña-Eguiluz, R., Muñoz-Castro, A. E., Rodriguez-Mendez, B. G., Barbosa-Pliego, A. (2013). Toxicity and Genotoxicity in HeLa and E. coli Cells Caused by a Helium Plasma Needle. Applied Physics Research, 5(5), 21-28.

Garza, J. (2014). Análisis multicriterio de puntos de inflexión de precio en el mercado de divisas. San Nicolás de los Garza, Nuevo León: Universidad Autónoma de Nuevo León.

Gomero, N. (2014). Análisis económico de los impuestos: Impacto en la rentabilidad de las inversiones. Quipukamayoc, 79-87.

Instituto Nicaragüense de Investigaciones y Estudios Tributarios. (2015). Balance de la Ley de Concertación Tributaria. Managua, Nicaragua: INIET.

Ishii, K., Takeuchi, A., Nishinoiri, O., Endo, G., & Ono-Ogasawara, M. (2022). Development of a method to determine workers' personal exposure levels to glyphosate. Journal of Occupational Health, 64(1).

Jalilian, M., & Shiri, S. (2022). The reliability of the Wagner Scale for evaluation the diabetic wounds: A literature review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 16(1), 102507.

Jeong, S., Kim, J., Choi, K., & Cho, Y.-R. (2025). Development of AI-Based Diagnostic Systems for Wound Images. 2024 15th International Conference on Information and Communication Technology Convergence (ICTC) (pp. 16-18). Island: IEEE.

M. Miller, G., & K. Abraham, M. (2024). Pitfalls of Wound Management. In D. G. Goyal,, & A. Mattu, Urgent Care Emergencies: Avoiding the Pitfalls and Improving the Outcomes, Second Edition. Wiley Online Library.

Mankowitz MD, S. (2017). Laceration Management. The Journal of Emergency Medicine, 53(3), 369-382.

Martines, E., Brun, P., Cavazzana, R., Cordaro, L., Zuin, M., Martinello, T., Iacopetti, I. (2020). Wound healing improvement in large animals using an indirect helium plasma treatment . Clinical Plasma Medicine, 17(100095).

Masri, S., & Fauzi, M. B. (2021). Current insight of printability quality improvement strategies in natural-based bioinks for skin regeneration and wound healing,. Polymers, 13(7), 1011.

Masson-Meyers, D. S., Andrade, T. A., Caetano, G. F., Guimaraes, F. R., Leite, M. N., Leite, S. N., & Frade, M. A. (2018). Experimental models and methods for cutaneous wound healing assessment. International Journal of Experimental Pathology, 101(1-2), 21-37.

Moholkar, D. N., Sadalage, P. S., Peixoto, D., & Paiva-Santos, A. C. (2021). Recent advances in biopolymer-based formulations for wound healing applications. European Polymer Journal, 160(5).

Negussie Tesema, S., & Bourennane, E.-B. (2021). Multi-Grid Redundant Bounding Box Annotation for Accurate Object Detection. IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing,, 145-152.

Nira, & Kumar, H. (2022). Epidemiological Mucormycosis treatment and diagnosis challenges using the adaptive properties of computer vision techniques based approach: a review. Multimedia Tools And Applications, 81(10), 14217-14245.

Puri, S., Mandal, S. K., Pal, P., Lamba, R. P., Miller, V., Pal, E. N., & Deepa, P. R. (2024). Biochemical evaluation of wound healing efficacy of cold plasma-conditioned media under different operational conditions. Journal of Physics D: Applied Physics, 57(405201).

Raj M.D, S., Raj M.D., S., P.A.-C., W. A., Charles M.D., W., & Alexander M.D., A. (2015). Novel Penile Splint and Its Use in Microsurgical Penile Replantation. Plastic and Reconstructive Surgery Journal of the American Society of Plastic Surgeons, 135(6), 1082-1083.

Ramachandram, D., Ramirez-GarciaLuna, J., Fraser, R. D., Arriaga-Caballero, J., & Allport, J. (2022). JMIR mHealth and uHealth.

Rosillo, J. (2005). La inflación: ¿Elemento inocuo en las decisiones de inversión? Forum Empresarial, 20-46.

Ruiz, J. (1992). Capital y depreciación: Una aproximación endógena. Valencia, España: Universitat de Valencia.

Scebba, G., Zhang, J., Catanzaro, S., Mihai, C., Distler, O., Berli, M., & Karlen, W. (2022). Detect and-segment: A deep learning approach to automate wound image segmentation. Informatics in Medicine Unlocked.

Scebba, G., Zhang, J., Catanzaro, S., Mihai, C., distler, O., Berli, M., & Karlen, W. (2022). Detect-and-segment: A deep learning approach to automate wound image segmentation. Informatics in Medicine Unlocked, 29(100884).

Shrestha, R., Krishan, K., Ishaq, H., & Kanchan, T. (2023). Abrasion. In StatPearls, NAtional Library of Medicine NAtional Center for Biotechnology Information.

Sina Jelodar, K. Y., Khalatbari, M. R., Reza Bahrami , S., & Abbas Amirjamshidi, I. (2018). Stab Wounds to the Head; Case Series, Review of Literature, and Proposed Management Algorithm. Asian Journal of Neurosurgery, 13(03), 754-759.

Skalski, P. (2019). Alpha Make Sense. Make Sense: https://github.com/SkalskiP/make-sense

Twormey, D. M., Petrass, L. A., Fleming, P., & Lenehan, K. (2018). Abrasion injuries on artificial turf: a systematic review. Journal of Science and Medicine in Sport, 550-556.

Wang, S. C., Anderson, J. A., Evans, R., Woo, K., Beland, B., Sasseville, D., & Moreau, L. (2017). Point-of-care wound visioning technology: Reproducibility and accuracy of a wound measurement app. Reproducibility and accuracy of a wound measurement app. PloS one, 12(8), e0183139.

Yazici, R. (2024). Retrospective analysis of penetrating and cutting instrument injury cases from the prehospital emergency medical system perspective. Medicine Science, 13(3), 667.

Zahia, S., Garcia Zapirain, M., Sevillano, X., Gonzalez, A., Kim, P. J., & Elmaghrabi, A. (2020). Pressure injury image analysis with machine learning techniques: A systematic review on previous and possible future methods. Artificial Intelligence in Medicine, 102(101742).

Zhang, R., Tian, D., Xu, D., Qian, W., & Yudong, Y. (2022, Julio 28). A Survey of Wound Image Analysis Using Deep Learning: Classification, Detection, and Segmentation. IEEE Access, 10, 79502-79511.

Published

2025-06-26

How to Cite

Velázquez, J. A. A., Reyes-Nava, A., González-Domínguez, M.-C., Alejo-Eleuterio, R., González-Ramírez, M. D., & García-Álcantara, E. (2025). AUTOMATIC WOUND DETECTION AND MEASUREMENT SYSTEM IMPLEMENTED IN YOLOV7, FOR FUTURE WOUND HEALING APPLICATION. Nexo Revista Científica, 38(01), 35–57. https://doi.org/10.5377/nexo.v38i01.20588

Issue

Section

Articles