Generalized functions
DOI:
https://doi.org/10.5377/rtu.v14i41.22053Keywords:
Asymptotic analysis, differential equations, functions, integrals, generalized functions, distributionsAbstract
Asymptotic analysis is an old subject that has applications in various fields of pure and applied mathematics, physics, and engineering. Asymptotic techniques are used to approximate complicated integral expressions resulting from various analytical transformation. Also, the solutions of some differential equations are calculated with greater precision using asymptotic techniques. An important feature of the theory of asymptotic expansions is that it plays an important role with experience and intuition in solving particular problems linked to nature. The objective of this study is to present approximations of this theory using generalized functions. The theory of generalized functions is another important area within mathematics, in which applications have been found for physics and engineering. Various studies have found a relationship between asymptotic techniques and distribution theory. The research is aimed at knowing in which distribution spaces such as E^,(R),P^,(R),O_γ^,(R).The expansion is valid. The momentum technique of asymptotic expansion is valid for many varieties of nuclei, such as fast-decaying and rapidly oscillating generalized functions. The asymptotic expansion also provides expansions of many integrals and series. Some series can be both convergent and asymptotic; however, there are divergent series that are asymptotic, which is why asymptotic series are referred to as divergent series. Rapidly decaying distributions at infinity are of fundamental importance in the study of generalized asymptotic expansions of functions. These expansions immediately give rise to the classical development of various integrals and series. The moment of the asymptotic expansion is referred to the expansion of the distributional kernels of the type f(λx) as λ→∞.
Downloads
39
References
Estrada, R., & Kanwal, R. P. (1992). The asymptotic expansion of some multidimensional generalized functions. Journal of Mathematical Analysis and Applications, 163(2), 264–283.
Kanwal, R. P. (1983). Generalized functions: Theory and technique. Academic Press.
Schwartz, L. (1966). Théorie des distributions. Herman.
Vladimirov, V. S., Drozhinov, Y. N., & Zavyalov, B. I. (1986). Multidimensional Tauberian theorems for generalized functions. Nauka.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 National Autonomous University of Nicaragua, Managua

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores que publican en esta revista están de acuerdo con los siguientes términos.
- El autor o los autores de los artículos, ensayos o investigaciones conceden a la Universidad Nacional Autónoma de Nicaragua, Managua (UNAN-Managua) los derechos de edición (copyright) del trabajo enviado, por consiguiente la Universidad cuenta con el derecho exclusivo para publicar el artículo durante el periodo completo de los derechos de autor.
- Estos derechos de autor/ autores autorizan a la Revista Torreón Universitario y a la Universidad editar y divulgar/publicar el artículo en dicha Revista, incluyendo reproducción impresa y electrónica, el almacenamiento, recuperación y cualquier otro tipo de publicación, y fuentes de información secundaria como servicios de resúmenes y bases de datos, así mismo la facultan a proteger el artículo contra el uso no autorizado para su difusión por medios impresos o electrónicos (PDF, HTML, EPUB, XML u otros).
Licencia para el uso del contenido
La revista hace uso de la Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Bajo esta declaración:

Este revista está sujeta a una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. Puede ser copiada, distribuida y transmitida públicamente siempre y cuando se cite al autor y la fuente (Revista Torreón Universitario), no debe modificarse ni utilizarse con ningún fin comercial. La licencia completa se puede consultar en http://creativecommons.org/licenses/by-nc-nd/4.0/.

