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ABSTRACT 
 

This article presents a general classification of difference-iterative algorithms (DIA) which are increasingly 

being used in microprocessor control systems for industrial, scientific, and technical objects. The 

classification is based on taking into account the features of the DIA structures (the method of organizing 

convergence, the order of generating the next increments of iterated quantities, cascading and interaction of 

several DIA, etc.). The objective of the presented DIA classification is to give microprocessor algorithmic 

software developers an orientation when choosing known algorithms and prospects when developing new 

DIA for a specific purpose. 

 

Keywords: Integer algorithms; Calculation of functions on microprocessors; Algorithmic support of 

microprocessors and special computers. 

 

RESUMEN 
 

Este artículo presenta una clasificación general de algoritmos iterativos de diferencias (DIA) que se utilizan 

cada vez más en sistemas de control de microprocesadores para objetos industriales, científicos y técnicos. 

La clasificación se basa en tener en cuenta las características de las estructuras DIA (el método de 

organización de la convergencia, el orden de generación de los siguientes incrementos de cantidades 

iteradas, cascada e interacción de varios DIA, etc.). El objetivo de la clasificación DIA presentada es dar a 

los desarrolladores de software algorítmico de microprocesadores una orientación al elegir algoritmos 

conocidos y prospectos al desarrollar nuevos DIA para un propósito específico. 

 

Palabras claves: Algoritmos de enteros; Cálculo de funciones en microprocesadores; Soporte algorítmico 

de microprocesadores y computadoras especiales. 

 

1. INTRODUCTION 
 

Due to the widespread use of microprocessors (MP) in local automation systems of industrial and scientific 

facilities, a significant need arose for integer and high-speed algorithms. 

 

Integer arithmetic (without using multiplications and divisions as independent operations) is based, among 

other things, on the so-called difference-iterative algorithms. 
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For the first time, difference-iterative algorithms (DIA) were proposed by J.E. Volder (1959) and J.E. 

Maggit (1962) to calculate certain trigonometric functions. Then, in the works of A.M. Oransky (1977) and 

his joint inventions with A.L. Reichenberg (Oransky and Reichenberg, 1980), they were improved, among 

other things, for calculating several algebraic functions.  

But all these developments were focused on hardware implementation, and therefore did not have a wide 

application. Their development followed the heuristic path of the appearance of separate algorithms. 

 

The DIA were purposefully developed only after using mathematical models of DIA and their analysis for 

the deterministic creation of new DIA. This was done in the works of N.S. Anishin (2006) and other 

scientists (Chastikov and Bulatnikova, 1999). 

 

2. METHODS 
 

2.1. Structure of DIA 

 

Let's consider the structure of the DIA. It includes a formula for determining the values of the indicator and 

a number of the same recurrent formulas (operators) for calculating the next values of the iterated quantities 

at each iteration step. 

 

The indicator is defined as: 

 
𝑞𝑖 = 𝑠𝑖𝑔𝑛 𝑋𝑖, (1) 

 

where 𝑞𝑖 is the element of a subset of the indicator values of the set Q 

 
𝑄 = {{−1,+1}, {−1,0,+1}, {0, +1}} (2) 

 

The presence of indicators allows changing the type of operation (addition or subtraction), or cancel several 

operations of a linear transformation of information (for example, to keep the same value of the iterated 

quantity). Another important role of indicators is to ensure the non-linearity of the functional transformation 

of information. This is ensured by testing and conditional transition in programs that implement DIA. 

 

The remaining recurrent formulas (operators) for calculating the current values of iterated quantities have 

the following form 

 
𝑋𝑖 = 𝜑(𝑉𝑖−1, 𝐶, 𝑄), (3) 

 

where 𝑉𝑖−1 is the set of previous values of iterated quantities, including 𝑋𝑖−1, С, which is the set of constants 

and initial values of iterated quantities, including 𝑋0, Q is the set of indicators. 

 

In (Anishin and Bulatnikova, 2006; Chastikov and Bulatnikova, 1999), it is shown that the potential 

possibility of the DIA-based functional transformation (i.e., without multiplication and division) consists in 

organizing convergent iterative processes, whose final values of the iterated quantities are equal to the values 

of the given functions at the given values of their arguments. 

 

As an example, we give a DIA presented below. 
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𝑞𝑖−1 = 𝑠𝑖𝑔𝑛𝑍𝑖−1 = {

+1, 𝑖𝑓 𝑍𝑖−1 > 0;
−1, 𝑖𝑓 𝑍𝑖−1 < 0;
0, 𝑖𝑓 𝑍𝑖−1 = 0, 𝑠𝑡𝑜𝑝

 

𝑍0 = 𝑦 − 𝑥, 𝑍𝑖 = 𝑍𝑖−1 − 𝑞𝑖−1 ∙ 𝑦 ∙ 2
−𝑖, 𝑍𝑛 → 0; 

𝑌0 = 𝑦 − 𝑥, 𝑌𝑖 = 𝑌𝑖−1 − 𝑞𝑖−1 ∙ 𝑥 ∙ 2
−𝑖, 𝑌𝑛 →

(𝑥−𝑦)2

𝑦
 , 

(4) 

 

where i is the iteration number i=1,2,...,n; n is the binary number of bits (unsigned) of arguments x and y. 

 

The first and second operators in (4) determine the indicator 𝑞𝑖 , and the third one calculates the recurrent 

value of the desired function 
(𝑥−𝑦)2

𝑦
 

 

2.2. Classification of DIA 

 

The DIA differ significantly by the 𝑞𝑖 indicators, forming process, and the way they are used in other 

operators of DIA. 

 

2.2.1. Additive decomposition of the quotient of two quantities 

 

This decomposition aims at searching for the quotient of two quantities, for example, x and y as a sum 

 

𝑥

𝑦
=∑𝑞𝑖−1 ∙ 2

−𝑖

𝑛

𝑖=1

 (5) 

 

Note that the 𝑞𝑖 determination operators are non-linear due to the first operator (as, for example, in (4)).  

 

Ways of using 𝑞𝑖  operators in other q (linear) DIA operators are different. 

In one case, they provide a change in the current iterated value by a specific increment (with a + or – sign) 

 

𝑍𝑖 = 𝑍𝑖−1 + 𝑞𝑖−1 ∙ 𝑉 ∙ 2
−𝑖 (6) 

 

Or they increase the current iterated value by k times  

 
𝑍𝑖 = 𝑍𝑖−1 ∙ (1 + 𝑞𝑖−1 ∙ 2

−𝑖), (7) 

 

i.e. 𝑘 = 1 + 𝑞𝑖−1 and in this case 𝑉 = 𝑍𝑖−1 

 

Note that the cases where additive terms of the type represented in (6) and (7) are observed in the linear or 

nonlinear operator are not excluded. 

 

2.2.2. Multiplicative decomposition of the quotient of two quantities 

 

In this case, the indicators 𝑞𝑖  are coefficients in the expansion of the quotient of two quantities of the form 

 
𝑤

𝑢
= ∏ (1 + 𝑞𝑖−1

∗ ∙ 2−𝑖) ∙ (1 +𝑛
𝑖=1 𝑞𝑖−1 ∙ 2

−𝑖), (8) 

 

where 𝑞𝑖−1
∗  is the value of the indicator 𝑞𝑖−1 after the first half of the i-th iteration.  

To obtain the decomposition (8), the group of the following operators is used 

 
𝑞𝑖−1 = 𝑠𝑖𝑔𝑛 𝑌𝑖−1 (9) 
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𝑌0 = |𝑤| − |𝑢|, 𝑌𝑖 = 𝑌𝑖−1 − 𝑞𝑖−1 ∙ 𝑋𝑖−1 ∙ 2
−𝑖, 𝑌𝑛 → 0; 

𝑋0 = |𝑢|, 𝑋𝑖 = 𝑋𝑖+1 ∙ (1 + 𝑞𝑖−1 ∙ 2
−𝑖), 𝑋𝑛 → |

𝑤

𝑢
|, 

 

where i=1,2,…,n; n is the number of the iteration performed twice. 

 

The algorithm (9) will converge if 

 

∏ (1 − 2−𝑖)2 < |
𝑤

𝑢
| <15

𝑖=1 ∏ (1 + 2−𝑖)215
𝑖=1 , (10) 

 

i.e. within the limits from 0.0834 to 5.6842. 

 

Other ways of using 𝑞𝑖 in the other DIA operators are the same as in section 2.1. They provide the raising 

of a fraction to natural power, for calculating the logarithm 𝑙𝑛 |
𝑤

𝑢
| and the inverse value. 

 

Below we give an example of DIA (Reichenberg, 1982) with the decomposition (8) 

 
𝑞𝑖−1 = 𝑠𝑖𝑔𝑛 𝑌𝑖−1 

𝑋0 = 𝑥 − 2𝑧, 𝑋𝑖 = 𝑋𝑖−1 − 𝑞𝑖−1 ∙ 𝑍𝑖−1 ∙ 2
1−𝑖, 𝑋𝑛 → 0; 

𝑍0 = 𝑧, 𝑍𝑖 = 𝑍𝑖−1 ∙ (1 + 𝑞𝑖−1 ∙ 2
1−𝑖), 𝑍𝑛 → 𝑥 − 𝑧; 

𝑌0 = 𝑦, 𝑌𝑖 = 𝑌𝑖−1 ∙ (1 + 𝑞𝑖−1 ∙ 2
1−𝑖), 𝑌𝑛 →

𝑥𝑦−𝑦𝑧

𝑧
; 

𝑈0 = 𝑥, 𝑈𝑖 = 𝑈𝑖−1 ∙ (1 + 𝑞𝑖−1 ∙ 2
1−𝑖), 𝑈𝑛 →

𝑥2−𝑥𝑧

𝑧
; 

𝑉0 = 𝑧, 𝑉𝑖 = 𝑉𝑖 + 𝑞𝑖−1 ∙ 2
1−𝑖 ∙ 𝑈𝑖−1, 𝑈𝑛 →

(𝑥−𝑧)2

𝑧
; 

(11) 

 

where i=1,2,…,n; n is the same as in (9). 

 

2.3. DIA with counterbalancing 

 

An essential feature of such DIA is the determination of the difference between two iterated quantities and 

tracking the sign of inequality by the formula 

 

𝑞𝑖−1 = 𝑠𝑖𝑔𝑛 (𝑋𝑖 − 𝑌𝑖) = {
+1, if 𝑋𝑖 ≥ 𝑌𝑖

−1 (or 0), if 𝑋𝑖 < 𝑌𝑖 
 (12) 

 

The 𝑞𝑖 indicators, obtained in this way are used to organize an iterative process involving other iterated 

quantities, besides 𝑋𝑖 and 𝑌𝑖.In this case, operators with both additive and multiplicative increments are 

used. 

 

Here are two such DIA. The first one is with additive increments (Oransky and Reichenberg, 1980). 

 

𝑞𝑖−1 = 𝑠𝑖𝑔𝑛 (𝑋𝑖−1 − 𝑌𝑖−1) = {{

+1, 𝑖𝑓 𝑋𝑖−1 > 𝑌𝑖−1;
−1, 𝑖𝑓 𝑋𝑖−1 < 𝑌𝑖−1;
0, 𝑖𝑓 𝑋𝑖−1 = 𝑌𝑖−1, 𝑠𝑡𝑜𝑝

 

𝑋0 = 𝑥, 𝑋𝑖 = 𝑋𝑖−1 − 𝑞𝑖−1 ∙ 𝑌𝑖−1 ∙ 2
−𝑖, 𝑋𝑛 →

𝑥2+𝑦2

𝑥+𝑦
; 

𝑌0 = 𝑦, 𝑌𝑖 = 𝑌𝑖−1 + 𝑞𝑖−1 ∙ 𝑋𝑖−1 ∙ 2
−𝑖, 𝑌𝑛 → 𝑋𝑛, 

 

(13) 

 

where i=1,2,…,n; n is the iteration number. 
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Note that in some DIA, the totality of all 𝑞𝑖  indicators carry certain valuable information. For example, in 

DIA (13), the sum of all 𝑞𝑖 is equal to the function 
𝑥−𝑦

𝑥+𝑦
 , that is  

 

∑𝑞𝑖

𝑛−1

𝑖=1

= 
𝑥 − 𝑦

 𝑥 + 𝑦
 (14) 

 

The second example of DIA with multiplicative increments of iterated quantities (Bulatnikova and 

Gershunin, 2015) is:  

 

𝑞𝑖−1 = 𝑠𝑖𝑔𝑛 (𝑋𝑖−1 − 𝑌𝑖−1) = {{

+1, if 𝑋𝑖−1 > 𝑌𝑖−1;
−1, if 𝑋𝑖−1 < 𝑌𝑖−1;
0, if 𝑋𝑖−1 = 𝑌𝑖−1, stop

 

𝑋0 = 𝑥, 𝑋𝑖 = 𝑋𝑖−1 ∙ (1 + 2
−𝑖)1−𝑞𝑖−1, 𝑋𝑛 → √𝑥; (15) 

𝑌0 = 𝑘, 𝑌𝑖 = 𝑌𝑖−1(1 + 2
−𝑖)𝑞𝑖−1, 𝑌𝑛 → √𝑥, 

(15) 

 

where k is a constant equal to ∏ (1 + 2−𝑖)−1𝑛
𝑖=1 , i is the iteration number. 

 

The convergence of DIA (15) is provided under the condition that the number x is represented with an even 

(or zero) order and a mantissa within the interval (2−2, 1) (Bulatnikova and Gershunina, 2016). 

 

Here, we note another feature of DIA with counterbalancing. According to (9), DIA has two-sided 

increments, while according to (15) it has one-sided increments of counterbalanced iterated quantities. This 

feature allows classifying such DIA in different ways. The counterbalancing method is independent of the 

above ability and can be either additive (DIA (13)) or multiplicative (DIA (15)). 

 

3. RESULTS AND DISCUSSION 
 

The greatest technical and economic effect when designing algorithmic support is achieved if the DIA is 

modified for a specific task by varying the initial values of the iterated quantities, as well as the DIA 

constants and structure (superposition of algorithms). 

 

3.1. Mathematical models of DIA 

 

This can be achieved only by owning a mathematical model of DIA, for example, replacing recurrent 

expressions (operators) with an algebraic expression. Further, transforming algebraic expressions in the 

right direction, we determine the convergence of DIA and find the desired function. To do this, we 

performed the following mathematical operations (13): 

 

𝑋𝑛 = 𝑥 + 𝑦 ∙∑𝑞𝑖−1 ∙ 2
−𝑖

𝑛

𝑖=1

 

𝑌𝑛 = 𝑦 + 𝑥 ∙∑𝑞𝑖−1 ∙ 2
−𝑖

𝑛

𝑖=1

 

(16) 

 

Given that 𝑋𝑛 = 𝑌𝑛 (i.e. the counterbalancing will take place), we have the following algebraic expression:  

 

𝑥 − 𝑦 ∙ 𝑄 = 𝑦 + 𝑥 ∙ 𝑄, где 𝑄 = ∑ 𝑞𝑖−1 ∙ 2
−𝑖𝑛

𝑖=1 . 
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Then 𝑄 =
𝑥−𝑦

𝑥+𝑦
 . If we take variables, for example, w and u, instead of 𝑋0 and 𝑌0, we get 

 

𝑋𝑛 = 𝑌𝑛 =
𝑥𝑢+𝑦𝑤

𝑢+𝑤
, (17) 

 

3.2. Building mathematical models of DIA 

 

We have considered the simplest DIA. It implements division without restoring the remainder (quasi-

division) and multiplication (Oransky, 1977). 

 

𝑞𝑖−1 = 𝑠𝑖𝑔𝑛𝑊𝑖−1 = {

+1, if 𝑊𝑖−1 > 0;
−1, if 𝑊𝑖−1 < 0;
0, if 𝑊𝑖−1 = 0, stop

 

𝑊0 = 𝑤, 𝑊𝑖 = 𝑊𝑖−1 − 𝑞𝑖−1 ∙ 𝑠 ∙ 2
1−𝑖, 𝑊𝑛 → 0; 

𝑉0 = 𝑣, 𝑉𝑖 = 𝑉𝑖−1 + 𝑞𝑖−1 ∙ 𝑡 ∙ 2
1−𝑖, 𝑉𝑛 → 𝑣 +

𝑤

𝑠
∙ 𝑡, 

(18) 

 

where w, v, s, t are the initial parameters (s>0), i is the iteration number ( i =1, 2, ...n). 

 

Since DIA (18) converges (the convergence condition 
𝑤

𝑠
< 2), then  

 

𝑊𝑛 = 𝑤 +∑𝑞𝑖−1 ∙ 2
1−𝑖 ∙ 𝑠 = 0

𝑛

𝑖=1

 (19) 

 

From here 

 

𝑄 =∑𝑞𝑖−1 ∙ 2
1−𝑖 =

𝑤

𝑠

𝑛

𝑖=1

 (20) 

 

From the second DIA operator (18) we have 

 

𝑉𝑛 = 𝑣 +
𝑤

𝑠
∙ 𝑡 (21) 

 

Setting any simplest functions of any arguments to parameters w, v, s, and t (without multiplication and 

division), we get more complex transformations of information. 

Further, consider the process of constructing a mathematical model of DIA (11): 

 
0 = 𝑋0 − 𝑍0(𝑄 − 1), 

𝑍𝑛 = 𝑍0 ∙ 𝑄, 

𝑌𝑛 = 𝑌0 ∙ 𝑄, 

𝑈𝑛 = 𝑈0 ∙ 𝑄, 

𝑉𝑛 = 𝑉0 + 𝑈0 ∙ (𝑄 − 1), 
 

(22) 

where 𝑄 = ∏ (𝑞𝑖−1
∗ ∙ 21−𝑖)(𝑞𝑖−1 ∙ 2

1−𝑖)𝑛
𝑖=1 , 

 

where i=1,2,…,n; n is the iteration number. 

 

Using different variables or functions in place of 𝑍0, 𝑌0, 𝑈0 и 𝑉0 we will get their superpositions, i.e. the 

desired functional dependence. 
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3.3. An example of an effective DIA modification 

 

Among the known DIA, we selected the DIA (13) which was modified as follows (Bulatnikova and 

Gershunina, 2016): 

 
𝑞𝑖−1 = 𝑠𝑖𝑔𝑛 (𝑋𝑖−1 − 𝑌𝑖−1) ∙ 𝑠𝑖𝑔𝑛(𝑢 + 𝑤); 

𝑋0 = 𝑥, 𝑋𝑖 = 𝑋𝑖−1 − 𝑞𝑖−1 ∙ 𝑤 ∙ 2
1−𝑖 ,∙, 𝑋𝑛 ⟹

𝑥𝑢+𝑦𝑤

𝑢+𝑤
; 

𝑌0 = 𝑦, 𝑌𝑖 = 𝑌𝑖−1 + 𝑞𝑖−1 ∙ 𝑢 ∙ 2
1−𝑖, 𝑌𝑛 ⟹ 𝑋𝑛, 

(23) 

 

where i is the iteration number ( i =1, 2, ...n); n is the binary number of bits of the arguments (except for 

sign). 

 

Simultaneously, we introduce such functions of one variable t in place of 𝑋0, 𝑌0, w and u 

 
𝑥 = 𝑘𝑥 ∙ 𝑡 + 𝑚𝑥, 𝑤 = 𝑘𝑤 ∙ 𝑡 + 𝑚𝑤 

𝑦 = 𝑘𝑦 ∙ 𝑡 + 𝑚𝑦, 𝑢 = 𝑘𝑢 ∙ 𝑡 + 𝑚𝑢 
(24) 

 

To exclude multiplication in (23), the coefficients 𝑘𝑗  ( 𝑗 ∈ {𝑥, 𝑦, 𝑢,𝑤}) are chosen to be zero or integer a 

non-negative degree (1⁄2) with the sign ±𝑘𝑗 . In this case, the multiplication is replaced by an arithmetic shift 

of the variable t by |𝑙𝑜𝑔2|𝑘𝑗|| digits (towards the lower digits) with the assignment of the 𝑘𝑗  sign to the 

result. 

 

It is shown (Bulatnikova and Gershunina, 2019; Chastikov and Bulatnikova, 1999) that any set of 

𝑘𝑗  corresponds to some function  

 

𝑓(𝑡) =
𝐴𝑡2+𝐵𝑡+𝐶

𝐷𝑡+𝐸
 , (25) 

 

where = 𝑘𝑥𝑘𝑢 + 𝑘𝑦𝑘𝑤 , 𝐵 = 𝑘𝑥𝑚𝑢 + 𝑘𝑦𝑚𝑤 +𝑚𝑥𝑘𝑢 +𝑚𝑦𝑘𝑤, 

 

𝐶 = 𝑚𝑥𝑚𝑢 +𝑚𝑦𝑚𝑤 , 𝐷 = 𝑘𝑢 + 𝑘𝑤  , 𝐷 = 𝑚𝑥 +𝑚𝑦. 

 

The inverse problem is posed (and a method for solving (Chastikov and Bulatnikova, 1999) is specified): to 

select such coefficients 𝑘𝑗 , 𝑚𝑗  (𝑗 ∈ {𝑥, 𝑦, 𝑢, 𝑤}) for a given function F(t) within the interval 𝑡 ∈

(𝛼, 𝛽) , so that 𝐹(𝑡) ≈  𝑚𝑓 + 𝑘𝑓 ∙ 𝑓(𝑡) with some given error (of the order of 0.1-0.01%). Note that the scale 

factor 𝑘𝑓 is chosen by the absolute value to be equal to 1,2,4,8,... and is reflected as the binary order of the 

result. 

 

To do this, we find the Pade approximant: 

 

𝐹(𝑡) ≈
𝑎2∙𝑡

2+𝑎1∙𝑡+𝑎0

𝑏1∙𝑡+𝑏0
 for 𝑥 ∈ (𝛼, 𝛽) (26) 

 

Using the method of undetermined coefficients we compose a system of five algebraic equations (some of 

them are non-linear) with variables 𝑘𝑗 , 𝑚𝑗  (𝑗 ∈ {𝑥, 𝑦, 𝑢, 𝑤}). 
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{
 
 
 
 

 
 
 
 𝑘𝑥𝑘𝑢 + 𝑘𝑦𝑘𝑤 = 𝛾 ∙

𝑎2
𝑘𝑓
,

𝑘𝑥𝑚𝑢 + 𝑘𝑦𝑚𝑤 +𝑚𝑥𝑘𝑢 +𝑚𝑦𝑘𝑤 = 𝛾 ∙
𝑎1 − 𝑏1 ∗ 𝑚𝑓

𝑘𝑓

𝑚𝑥𝑚𝑢 +𝑚𝑦𝑚𝑤 = 𝛾 ∙
𝑎1 − 𝑏1 ∗ 𝑚𝑓

𝑘𝑓
,

𝑘𝑢 + 𝑘𝑤 = 𝛾 ∙ 𝑏1,
𝑚𝑥 +𝑚𝑦 = 𝛾 ∙ 𝑏0,

 (27) 

 

where γ is some auxiliary coefficient that reduces the fraction (26).  

 

System (27) is redundant. But there are limitations. They reduce the possible set of solutions, up to an empty 

one, shown below: 

 

1) by the representability of the constants 𝑘𝑗  in the bit grid of the microprocessor |𝑚𝑗| < 1; 

 

2) by the representability of the initial values of the iterated quantities X, Y, U, W, F in the bit grid of 

the microprocessor 

 

|𝑚𝑗 + 𝑘𝑗 ∙ 𝑡| < 1 (𝑗 ∈ {𝑥, 𝑦, 𝑢, 𝑤}), (28) 

 

3) by the convergence of the basic algorithm (23)  

 
|(𝑘𝑥 − 𝑘𝑦)| ∙ 𝑡 + (|(𝑚𝑥 −𝑚𝑦)|<2|(𝑘𝑢 + 𝑘𝑤)| ∙ 𝑡 + (|(𝑚𝑢 +𝑚𝑤)| (29) 

 

Restrictions (29) apply for any t from the interval (α, β).  

 

The solution of the inverse problem should be optimal from the standpoint of accuracy because the larger 

|𝑘𝑗|, the less efficient is the use of 𝑙𝑜𝑔2|𝑘𝑗|, of binary digits of the arithmetic node of the microprocessor. 

While accepting |𝑘𝑗| > 1, the part of the higher (𝑙𝑜𝑔2|𝑘𝑗|) after an arithmetic shift towards the lower digits 

of the result will be uninformative (i.e., carrying complete information). 

 

Based on the above arguments, the mathematical foundations and the software package of the Bulat-2 

interactive automated complex for designing microprocessor-controlled production process algorithms have 

been developed. 

Such an algorithm is shown below (more precisely, the coefficients (24) for the DIA (23)) 

 

𝐹(𝑡) = 0.9175 ∙ √
0,575

1840 − 𝑡
 (30) 

 

where t is the pressure drop (in kPa). 

 

The working limits of the change in the argument t range from 0.63 to 0.10 kPa, i.e. α=0.63; β=0.10. 

 

With the involvement of the operator, the Bulat-2 automated interactive complex issued the following set 

of coefficients on the screen of a personal computer: 

 
𝑘𝑥 = 2

−6, 𝑚𝑥 = −0.075337, 

𝑘𝑦 = 2
−2, 𝑚𝑦 = −0.136616, 

(31) 
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𝑘𝑢 = 2
−1, 𝑚𝑢 = −0.432688, 

𝑘𝑤 = 2
−7, 𝑚𝑤 = −0.649032, 

𝑘𝑓 = 1, 𝑚𝑓 = 0.625000, 

 

The accuracy characteristics of DIA (23) with coefficients (31) are given below in the Error Table (Table 

1).  

 
Table 1. Error Table. 

Characteristics [units of lowest order digit]  

Maximum error 2 

The mathematical expectation of an error 0.448 

Mean square error 0.830 

 

The Error Table is obtained for the case of n=15 – the number of MP bits. 

  

Even at the beginning of the era of microprocessors and microcomputers, several scientists (Kagan and 

Stashin, 1987; Sinha, 1986) stated that most microcomputers and microprocessors lack so-called long 

operations (multiplication and division), and their software implementation requires a lot of time. Therefore, 

it is advisable to use information processing methods that do not contain such operations, or, in extreme 

cases, these operations are not included in the main cycle of calculating increments. 

  

These requirements are fully met by DIA. Being integer and high-speed, they are well combined with the 

microprocessor architecture, providing, along with algorithmic, also the hardware-based fast operation of 

the microprocessor control systems. 

 

4. CONCLUSION 
 

The presented classification of DIA provides the designer of the microprocessor algorithmic support with a 

great prospect in choosing known DIA, and orientation when creating new DIA for specific tasks.  
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