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ABSTRACT 

 
Conventional Data Envelopment Analysis (DEA) models are based on a production possibility set (PPS) 

that satisfies various postulates. Extension or modification of these axioms leads to different DEA models. 

In this paper, our focus concentrates on the convexity axiom, leaving the other axioms unmodified. 

Modifying or extending the convexity condition can lead to a different PPS. This adaptation is followed 

by a two-step procedure to evaluate the efficiency of a unit based on the resulting PPS. The proposed 

frontier is located between two standard, well-known DEA frontiers. The model presented can 

differentiate between units more finely than the standard variable return to scale (VRS) model. In order to 

illustrate the strengths of the proposed model, a real data set describing Iranian banks was employed. The 

results show that this alternative model outperforms the standard VRS model and increases the 

discrimination power of (VRS) models. 

Keywords: Data Envelopment Analysis (DEA), Convexity condition, Constant return to scale (CRS), 

Variable return to scale (VRS), Efficiency estimation. 

 

 

RESUMEN 
 

Los modelos de análisis envolvente de datos convencionales (DEA) se basan en un conjunto de 

posibilidades de producción (PPS) que satisface varios postulados. La extensión o modificación de estos 

axiomas conduce a diferentes modelos DEA. En este artículo, nuestro enfoque se concentra en el axioma 

de convexidad, dejando los otros axiomas sin modificar. Modificar o extender la condición de convexidad 

puede conducir a un PPS diferente. A esta adaptación le sigue un procedimiento de dos pasos para evaluar 

la eficiencia de una unidad en función del PPS resultante. La frontera propuesta está ubicada entre dos 

fronteras de la DEA estándar y conocidas. El modelo presentado puede diferenciar entre unidades con 

mayor precisión que el modelo de retorno a escala variable estándar (VRS). Para ilustrar las fortalezas del 
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modelo propuesto, se utilizó un conjunto de datos reales que describen los bancos iraníes. Los resultados 

muestran que este modelo alternativo supera al modelo estándar de VRS y aumenta el poder de 

discriminación de los modelos (VRS). 

Palabras clave: Análisis envolvente de datos (ADE), Condición de convexidad, Retorno constante a 

escala (CRS), Retorno variable a escala (VRS), Estimación de eficiencia. 

 

 

1. INTRODUCTION 

 
In standard microeconomic theory, the concept of a production function forms the basis for a description 

of input-output relationships in a firm. The production function shows the maximum amount of outputs 

that can be achieved by combining various quantities of inputs. Thus initially the problem is the 

construction of an empirical production function or frontier based on the observed data. Data envelopment 

analysis (DEA) has been recognized as an effective nonparametric mathematical optimization technique 

for measuring the relative efficiency of a group of comparable decision-making units (DMUs) with 

multiple inputs and outputs (Charnes et al., 1994), DEA has been used in many contexts including 

education systems, health care units, agricultural productions, military logistics and many other 

applications (Charnes et al., 1994; Alder et al., 2006; Emrouznejad et al., 2008; Lozano et al., 2013; 

Asmild et al., 2013). Conventional DEA models assume real-valued and non-negative inputs and outputs 

vectors. Besides, each DMU is expressed by the notation ( , )x y . The first component is regarded to input 

and the second can specify outputs.   The set of feasible activities is called the production possibility set 

(PPS) and is denoted by P and satisfied in the axioms of Envelopment, free disposability, constant return 

to scale (CRS) or unbounded ray and semi positive linear combination of activities to construct P. 

Regarding to these axioms, the ray from the origin through the highest point is the CRS efficient frontier. 

As pointed out correctly in Podinovski, 2004 CRS models require full proportionality assumptions 

between all inputs and outputs. The pioneering CCR1 model proposed by Charnes et al., 1978 satisfied in 

the above mentioned postulates. Various extension of axioms has been proposed in DEA literature. 

Among the modified variation, BCC2 model was presented by Banker, 1984. The BCC model has its 

production frontiers spanned by the convex hull of the existing DMUs. In other words, the axiom of CRS 

(Constant Return to Scale) was extended and modified. The frontier has piecewise linear and concave 

characteristics. Also satisfies in variable return to scale (VRS) properties. Other extension and 

modification of CRS property can be found in (Seiford et al., 1990; Petersen., 1990; Bogetoft, 1996; 

Bogetoft et al., 2000; Färe et al., 1985) Theoretically, these classic models evaluate proportional efficiency 

by maximizing ratio of the weighted sum of its outputs to the weighted sum of its inputs, subject to the 

condition that this ratio does not exceed one for any DMU. Another variation of DEA models is Additive 

model. This model has the same production possibility set as CCR and BCC models and their variants but 

treats the input excesses and output shortfalls directly in the objective function. A slack-based measure of 

efficiency (SBM) is another version of DEA models. This measure makes its efficiency evaluation as 

effected in objective, invariant to the measures used for different inputs and outputs (Cooper et al., 2007). 

Free disposal Hull (FDH) model assumes a nonconvex possibility set and firstly presented by Deprins et 

al., 2006. This model ignores the convexity axioms and then has extended by Tulkens, 2006 As it can be 

seen the modification and extensions of axioms leads to different models. As another example, modifying 

free disposability leads to notation of weak disposability which was demonstrated by Kuosmanen, 2005 

and extended by various authors. Among them, refer to (Podinovski et al., 2011; Färe et al., 2004) . For 

the notation of congestion can refer to Cherchye et al., 2001 As it can be seen different setting of axioms 

lead to different models. One of the most modified axioms was convexity. When the attention restricts to 

convexity axioms, the most applied BCC model is imagined. In this model, the convex hull of existing 

                                                 
1 CCR (Charnes, Cooper and Rhodes) 
2 BCC (Banker, Charnes and Cooper) 
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units’ parallel to variable return to scale (VRS) characteristic evaluates the efficiency.  Reserving the other 

axioms, that is to say, Envelopment, free disposability and VRS, a dilemma can raise. If the construction 

of convex hull is modified, how the efficiency frontier changes. What’s more, to what extent, the 

efficiency score does change? This article tackles with this dilemma. Looking over the existing studies, 

this paper focuses on DEA axioms while the convexity axioms is modified or relaxed. In other words, the 

postulates of Envelopment, free disposability also variable return to scale are preserved. On the other 

hand, the convexity condition has been modified and extended. This extension is imposed as an interval 

with upper and lower bound. Equipped with the relaxed axioms, a two-step procedure is presented to 

evaluate the efficiency. The first stage surveys the minimum quantity of boundaries which might be used 

in the second stage. A linear model is proposed to evaluate the efficiency score in the second stage. As the 

relaxed axioms claim the frontier of proposed method can be inserted between two classic DEA model, 

i.e. CCR and BCC model. The results show that this model can estimate the efficiency of DMUs more 

accurate than BCC model and operates as well as this model. The real example of 37 Iranian bank 

branches supports the idea behind this modified axiom. The rest of this paper is organized as follows: In 

the following section, the axioms of standard DEA models are presented. A proposed two-phase model 

with modified convexity condition is presented in the third section. An empirical example highlights the 

model strengths in section 4. Conclusion will end the paper.  

 

2. PRELIMINARIES 

 
In DEA each observed DMU is characterized by a pair of non-negative input and output vectors 

( , ) m s

j jX Y R  , {1,..., }j J n   The classic (Charnes et al., 1978) DEA model assumes that the 

underlying production possibility set (PPS) denoted by {( , )  can  produce   }m sT x y x R y R    and 

satisfies the following axioms: 

 

1) Envelopment: ( , ) , .j jX Y T j J     

2) Free disposability: ( , )x y T  , ( , ) m su v R   , y v  then ( , )x u y v T     

3) Constant Return to Scale: ( , )x y T ( , )   ,x y T R        . 

4) Convexity: ˆ ˆ( , ),( , ) ( , ) ( , ) (1 )( , )   0 1x y x y T x y x y x y T            

 
According to the minimum extrapolation principle (Banker et al., 1984), the DEA production possibility 

set (PPS) is the intersection of all sets 
m sS R   that satisfy the maintained axioms. Under the maintained 

assumptions (1) – (4), the minimum extrapolation PPS can be explicitly stated as: 

 

1 1

{( , ) , , 0}
n n

DEA

CRS j j j j

j j

T x y x X y Y  
 

      . 

 

If the study turns to efficiency estimations of DMUs and attention has restricted to classic Farrell input 

efficiency measurement defined as:  

 

( , ) min{ ( , ) }o o o oEff x y x y T    

 

Where vector ( , )o ox y  refers to the observed or hypothetical DMU under evaluation. Applying this 

measure directly to CRST  can yield a monotonic and convex set of points. Also, the mathematical 
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programming problem of this evaluation is called CCR (Charnes et al., 1978) input-oriented and has the 

following format: 

 

1

1

Min       

:                    1 , ,

                         1 , ,               

            0                          1 , ,

o

n

j ij io

j

n

j rj ro

j

j

s t x x i m

y y r s

j n



 









   

  

  





                               (1) 

 

This model is a constant return to scale (CRS) program and it assumes that the status of all input/output 

variables are known prior to solving the model. The efficiency ratio o  ranges between zero and one, with 

oDMU  being considered relatively efficient if it receives a score of one. From a managerial perspective, 

this model delivers assessments and targets with an output maximization orientation. In addition to these 

basic postulates, technology T  also be assumed to satisfy some of the following returns to scale axioms:   

 

5. Non-Increasing return to scale (NIRS): ( , )x y T and [0,1]  then ( , )x y T   . 

6. Non-Decreasing return to scale (NDRS): ( , )x y T and 1   then ( , )x y T   . 

 

Under the minimal assumptions of free disposability (2) and convexity (4), the minimum extrapolation 

PPS is referred to as the variable return to scale (VRS) technology, formally stated as: 

 

1 1 1

{( , ) , , 1, 0}
n n n

DEA

VRS j j j j j

j j j

T x y x X y Y   
  

        

 

Regarding to this technology, the mathematical programming problem foe estimating the efficiency of 

DMUs has the following format: 

 

1

1

1

       

:                    1 , ,

                         1 , ,               

            1

                                      1 , ,

n

j ij io

j

n

j rj ro

j

n

j

j

j

Min

s t x x i m

y y r s

j n



 













   

  



  







                       (2) 

 

The above model is an input oriented BCC (Banker et al., 1984) model. A similar model can be 

formulated to present output orientation VRS technology. If in addition to axioms (2) and (4) the 

assumption of NIRS (5) is imposed, the resulting minimum extrapolation PPS is the NIRS technology: 
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1 1 1

{( , ) , , 1, 0}
n n n

DEA

NIRS j j j j j

j j j

T x y x X y Y   
  

        

 

On the other hand, if instead of (5) one assumes NDRS (6), then the minimum extrapolation PPS is the 

NDRS technology: 

 

1 1 1

{( , ) , , 1, 0}
n n n

DEA

NDRS j j j j j

j j j

T x y x X y Y   
  

        

 

As it can be seen relaxation of axiom (3) leads to models of variable and non-increasing decreasing) 

returns to scale (Seiford et al., 1990) In addition to these four classical DEA technology, many variations 

of axioms (2) -(4) have been presented in the literature. Relaxation of axiom (2) leads to models of weak 

disposability (Kuosmanen, 2005) and congestion (Cherchye et al., 2001). Relaxation of (4) leads to free 

disposable hull (Deprins et al., 2006) and free replicable hull models (Tulkens, 2006). The above 

technologies and models are common models of relaxation axioms. In following section relaxation of 

convexity axiom will be discussed from another perspective.  

 
3. METHODOOLOGY 

 

Suppose that we have n  DMUs  and each ( {1,..., })jDMU j J n  uses m  inputs ( 1,..., )ijx i m  to 

produce s  outputs ( 1,..., )rjy r s . Let 
DEA

CRST  be the underlying production possibility set (PPS) satisfies 

the following axioms: 

 

1) Envelopment of observed data: ( , ) , .j jx y T j J    

2) Free disposability: ( , ) ,    x y T x x and y y    implies that ( , )x y T    

3) Constant return to scale: ( , )x y T ( , )   ,x y T R        

4) Convexity: ˆ ˆ( , ),( , ) ( , ) ( , ) (1 )( , )   0 1x y x y T x y x y x y T            

5) Minimal extrapolation: For each T  satisfying in axioms 1-4, we have T T    

 

An Algebraic representation of the PPS for technology
DEA

CRST , which satisfying the axioms 1–5, is given as 

 

1 1

{( , ) , , 0}
n n

DEA

CRS j j j j

j j

T x y x X y Y  
 

      

 

Relaxation the convexity condition, the variable return to scale (VRS) technology was presented by 

Banker et al., 1984 and formally stated as:  

 

1 1 1

{( , ) , , 1, 0}
n n n

DEA

VRS j j j j j

j j j

T x y x X y Y   
  

        
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The variable  presents the non-negative intensity variable. It is worth to relax the convexity condition as 

a mutual equation. In other words, instead of the employing the relation
1

1
n

j

j




  , the summation of 

intensity variable can be inserted in an interval with variable boundaries. Without the loss of generality, 

the lower and upper bound can be defined as[1 ,1 ]   . That is to say
1

1 1
n

j

j

  


    . 

Interestingly, 0   is consistent with the variable return to scale technology
DEA

VRST  . In the spirit of 

relaxing convexity axiom, the goal comes to specification of  . Toward this end, a two-phase procedure 

is established. 

 

First step: 

Looking for the minimum quantity for variable   falls behind the scope of proposed first stage. 

Admittedly, the notation 
1

1 1
n

j

j

  


    is a new variation of variable constant return to scale 

axiom. In the spirit of convexity relaxation, one could try to construct the PPS by employing the 

envelopment, free disposability and variable return to scale (VRS) axioms. The technology RVRST  can be 

stated as follows: 

 

1 1 1

{( , ) , ,1 1 , 0}
n n n

RVRS j j j j j

j j j

T x y x X y Y     
  

           

 

It is worth to note that the proposed technology has the minimum extrapolation interpretation under 

adapted set of axioms. To measure efficiency improvement, a modified input efficiency measure is 

needed. Our attention has been restricted to Farrell input efficiency measure defined as: 

 

( , ) min{ ( , ) }o o o o RVRSEff x y x y T      

 

The unit under evaluation is denoted by ( , )o ox y . Applying this measure directly to RVRST  can yield the 

modified input efficiency scores relative to the adapted reference technology. Also it can be computed by 

solving the following model and solver software.  

 

j

j 1

j

j 1

j

1

Min        

s t:                   i 1 , ,m      (3-1)

                         r 1 , ,s         (3-2)                   

             1-    1                  

n

ij io

n

rj ro

n

j

x x

y y

 

 



  









  

 

  







j

          (3-3)

                                      j 1 , ,n  

                           (3) 

 

Symbol   denotes a non-Archimedean infinitesimal and parameter   plays the role of abatement factor 

on inputs, as it does on model (2). One important feature of model (3) is the last constraint. This constraint 
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imposes convexity employing a mutual relation.  Hence, the aim is to probe for a model that selects 

minimum statue for boundaries. For doing so, the objective function has set as  . In essence, this 

modified measure gauges’ efficiency in the radial fashion relative to the monotonic hull of the PPS. Model 

(3) selects a minimum statue for boundaries hence model feasibility and optimality has been guaranteed.  

Theorem1: Model (3) is always feasible. 

Proof: since ( 0, ( ) 0, 1)j oj o       is a feasible solution of model (3). So the model is always 

feasible. So, the first step of the proposed method is tended to solve model (3).  

Second step: 

Equipped with the optimal solutions of model (3) in the first phase, let  0α n,1,...,i:α Minα ii 

.Regarding the axioms of envelopment, free disposability, variable return to scale (VRS) and relaxed 

convexity, we propose the following model for measuring the efficiency of oDMU  .  

 

1

1

1

       

:                    1 , ,         (4 -1)

                         1 , ,           (4 - 2)           

           1  1                             

n

j ij io

j

n

j rj ro

j

n

j

j

Min

s t x x i m

y y r s



 



  







   

  

    





 (4 -3)

                                      1 , ,j j n   

                     (4) 

 

Model (4) differs from model (3) only with respect to the relaxed convexity constraints expressed as 

1

 1  1  
n

j

j

  


     in case of the variable return to scale (VRS) specification. Additionally, the rest 

constraints have the same feature. Likewise, parameter   plays the role of abatement factor as does in 

model (3).  One important conclusion is that intensity variable is same in both models. This unchanged 

feature makes the proposed frontier acts between two known frontiers.  

Theorem2: The efficiency score of model (4) is not worse than that of BCC model (model (2)). That is

)θ(θ NEWBCC  . 

Proof: 

The last constraint of model (4) claims    1 1
1

j



n

j

 . This mutual relation includes 1
n

1j

j 


 . 

Let ( , )  be a feasible solution of BCC model (model (2)), it is also a feasible solution of model (4). 

Comparing both models’ feasible space, it is concluded that the space of BCC model (model (2)) is the 

subset of space of model (4). Hence, the optimal value of BCC model (model (2)) is not better than the 

optimal value of model (4). That is )θ(θ NEWBCC  .  

 

Theorem 3: In model (4), at least there exit one efficient unit. 

 

Proof:  

Consider the dual format of BCC model (model (2)): 
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1

1 1

1

:            1, ,

               1

                                                            1, ,

                                

s

r rp

r

s m

r rj i ij

r i

m

i ip

i

i

r

Max z u y u

s t u y v x u j n

v x

v i m

u



 



 

     



  





 



                            1, ,r s 

                               (5) 

 

Let ( , )p p pDMU x y  be under evaluated unit.  If ),,(


ppp uvu   be the optimal solution of model (5), 

we have:  

 

1*

1

**




uyuz
s

r

rprp   ,      


pu                                           (6) 

 

Also, in optimality the first constraint of model (5) claims that:  

 




ip

m

i

irp

s

r

r xvyu
1

*

1

*
                                                                     (7) 

 

The relation (7) admits that there must be at least one constraint for which the optimal weight ),(  vu  

leads to equality between the left and right hand side.  Now, consider the dual format of proposed model 

(4). The dual form is stated as follows: 

 

1

1 1

1

(1 ) (1 )

:              1, ,

               1

                                                       1, ,

                     

s

r rp

r

s m

r rj i ij

r i

m

i ip

i

i

r

Max z u y k k

s t u y v x k k j n

v x

v i m

u

 


 



    

      



  





 



                                  1, ,

                ,

r s

k k

 

 

                                            (8) 

 

Assume that ),,(


ppp uvu   be the optimal solution in the model (8). Let kku  .  Also, the first 

constraint is satisfied for the optimal solution. That is: 

* *

1 1

 
s m

p rj p ij

r i

u y v x k k
 

      

 

Since  


pu , we have: 
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    k k k k     

 

Clearly, k  and k   are dual variables which corresponds to the constraint (4-3) j

1

1 1  
n

j

  


      . In 

essence the acceptable value for dual variable k  and k   can capture zero. That is 0k k  . Employing 

the complementary slackness theorem, we have: 

 

 1
1

j



n

j

  

 


1 
1

j

n

j

 

 

Which is impossible. Therefore, the first constraint and the objective function of the dual model (8) will be 

as follows: 

 

* *

1 1

*

1

s m

r rp i ip

r i

s

r rp

r

u y v x
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Then we have: 
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Then, at least 1p
*   and this completes the proof. 

Briefly, a two-stage approach can simplify the procedure of finding the minimum quantity of proposed 

lower and upper bound. Our next objective is to characterize PPS that satisfies the minimum extrapolation 

principle subject to the properties 1-4. To illustrate, consider a simple numerical example in a single-input 

single-output case. Table1 shows the five DMUs.  

 
Table1. Data Set of five DMUs 

DMU Input Output 

D1 2 1 

D2 3 4 

D3 6 6 

D4 9 7 

D5 5 3 
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This example aptly illustrates that a sequential application of the axioms can generate a monotonic and 

convex hull of PPS.  Figure 1 illustrates the example graphically. The reference technology
DEA

CRST  ,
DEA

VRST  

and 
DEA

RVRST  are verified.  

 
Figure 1. A simple case of 5 DMUs 

 

The reference technology
DEA

CRST  ,
DEA

VRST  and 
DEA

RVRST  are verified by this simple example. By applying 

envelopment, free disposability, constant return to scale and convexity parallel to minimum extrapolation 

the black linear frontier represents the DEA CRS frontier. The frontier was demonstrated as CCR frontier.  

Applying envelopment, free disposability and convexity again imposing variable return to scale parallel to 

minimum extrapolation. The piece-wise linear frontier depicts DEA VRS frontier. This frontier shows 

BCC frontier. For the purpose of comparison, the adapted axioms are implemented on this data set. 

Regarding to axiomatic foundation (envelopment, free disposability and variable return to scale) with 

relaxed convexity along with minimum extrapolation, the proposed frontier has the following format. 

Figure 2 represents the frontiers on the sample data set.  

 
Figure 2. production possibility set (PPS) of CCR, BCC and proposed models 
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As Figure 2 shows the estimated frontier of model (4) have a character which comes closer to DEA CRS 

(CCR model) rather than DEA VRS (BCC model). What’s more, it is worth to note that the proposed 

frontier has some similar behavior as DEAVRS (BCC model). This behavior can be characterized as the 

effect of constraint (4-3). Since this constraint allows the intensity variable   alters in described optimal 

minimum bound. With reference to Figure 2, unit D2 has lied on three frontiers. Interestingly, the 

proposed frontier in unit D2 is tangent to the frontier between BCC and CCR frontier. This property is 

consistent with Theorem (3). One of the important feature of proposed model (model (4)) can be driven 

with regarding to Figure 2. The proposed frontier is upper or tangent to the DEA VRS frontier (BCC 

model). Therefore, the efficiency measured by model (4) is not worse than that measured by BCC model 

(model (2)). Clearly, this property supports Theorem2. The example illustrates the need to modify the 

input efficiency measure in the case of relaxation convexity. The radial efficiency scores obtained with 

our proposed model come close to those of DEA VRS (BCC) models, but there are some notable 

differences, particularly with DMUs 1, 3 and 4.  DMU#1 is an efficient unit in DEA VRS model while its 

radial efficiency is 0.91 in proposed method. The benchmarks obtained by our proposed model are very 

close to the DEA VRS model. However, there exist notable differences between the computed targets in 

our proposed model with those obtained by DEA VRS formulation. Solving the DEA VRS model (model 

(2)), we obtain the radial efficiency of 0.53 and reference point (2.67, 3.01) with intensity variables  𝜆1 =
0.33    𝜆2 = 0.67 for inefficient unit D5. On the hand, as the Figure 2 shows the radial efficiency for this 

inefficient unit with regard to relaxed convexity technology is 0.46 and reference point (2.29, 2.27). This 

example demonstrates that proposed technology, which are justified by the adapted axiomatic analysis, 

can lead to efficiency scores and performance targets not greater that the known DEA VRS method. The 

application of the next section demonstrates that the proposed formulations can yield substantially 

different results. 

 

4. AN EMPIRICAL EXAMPLE 

 
This section illustrates the proposed model in assessing 37 Iranian bank branches. Four factors are 

selected as inputs: personnel (Staff) privilege )(x1
, benefit payment )(x2

 and delayed demands )(x3 , and 

one factor recorded as output: interest (y1).  
 

 

Table 2. data set of 37 Iranian bank branches 

DMU 1x  
2x  3x  1y  

D01 46.79 18498995996 53264852560 19969314548 

D02 24.51 14411686574 72380083269 15731542711 

D03 15.51 8860736637 42598397319 5058977577 

D04 24.26 13899053604 6411736105 12385243634 

D05 30.65 28496201869 4366489880 21706793947 

D06 25.54 37069157479 114935654544 14948666523 

D07 48.23 19690080929 57234222760 44304276334 

D08 33.73 22726721686 23456868289 13135578006 

D09 54.48 38967409513 436938504803 84940713101 

D10 40.34 56572978820 344245860744 77227782339 

D11 18.43 48063580938 151405425096 175807481201 

D12 31.11 13292920789 234489215832 44150867652 

D13 40.58 115201941693 1310099546771 187612455426 

D14 22.67 7507454431 65033329747 10959222029 

D15 44.32 117212672954 128339685560 488528538701 

D16 32.14 70423612922 575597667886 16490307548 

D17 88.34 270906592344 818003444354 209621361454 
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D18 28.68 109088144925 794883602155 127427007609 

D19 36.64 45435649108 161729833113 72598466849 

D20 34.62 157467992263 445088568421 39162408384 

D21 29.86 74974062462 59538234833 50822228758 

D22 28.03 22146330179 535291913756 11752655320 

D23 27.43 128232256516 214591474223 16784882367 

D24 31.03 46101275529 100230783101 23404976771 

D25 32.84 55605155762 167272021271 195548517193 

D26 11.66 66337226010 47868669745 4659601911 

D27 18.18 28831373265 19076494966 94858128176 

D28 31.44 31145197431 346181300256 144133837620 

D29 24.17 208373438089 20184723899 119202785808 

D30 13.34 11370634434 44739871980 7332879040 

D31 31.93 20645062576 46963006410 119719576835 

D32 31.66 102960688131 66182377075 219739666495 

D33 30.91 26446008607 231688742335 31935034820 

D34 24.73 10076766017 71761767269 26146466300 

D35 29.89 73594703492 85416663339 72319963500 

D36 30.88 76524893150 16513150725 75638230244 

D37 20.64 45687358659 4082761844 26851304512 

 
For comparison, three alternative models were computed: CCR model (model (1)), BCC model (model 

(2)) and our proposed model (model (4)). The obtained radial input efficiency scores are presented in 

Table 3. Implementing our proposed model (4) might employ the optimal solutions of the first step model 

(3). Hence, we first run model (3) then model (4) is executed supposing 

  01,...,37,j   min  jjj  . Therefore, by applying model (3) to the data in Table 2, we obtain 

the values of 1,...,37j  j . Then in order to implement model (4) we obtain a value of 

  01,...,37,j   min  jj  , that is 0.12. This value is considered instead of  and implemented in 

model (4) and the model is run for data of Table 2. 

 

 
Table 3. efficiency scores of the BCC, CCR and proposed models 

 

BCCθ  CCRθ   
NEWθ  

D01 0.62 0.19  0.56 

D02 0.69 0.19  0.62 

     

D03 1 0.1  0.89 

D04 1 0.38  0.91 

D05 1 0.86  0.96 

D06 0.89 0.46  0.52 

D07 0.68 0.39  0.62 

D08 0.64 0.14  0.56 

D09 0.47 0.39  0.44 

D10 0.43 0.29  0.41 

D11 1 0.99  0.99 

D12 0.87 0.57  0.81 

D13 0.48 0.42  0.47 

D14 1 0.25  0.9 

D15 1 1  1 

D16 0.41 0.05  0.36 

D17 0.26 0.24  0.24 
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D18 0.58 0.4  0.53 

D19 0.5 0.34  0.46 

D20 0.38 0.17  0.34 

D21 0.52 0.21  0.46 

D22 0.51 0.1  0.46 

D23 0.45 0.08  0.4 

D24 0.45 0.11  0.4 

D25 0.83 0.8  0.82 

D26 1 0.05  0.88 

D27 1 1  1 

D28 0.95 0.92  0.92 

D29 1 1  1 

D30 1 0.12  0.89 

D31 1 1  1 

D32 0.83 0.8  0.81 

D33 0.54 0.23  0.49 

D34 0.95 0.45  0.86 

D35 0.54 0.23  0.48 

D36 0.85 0.84  0.85 

D37 1 1  1 

AVE 0.73 0.47  0.68 

VAR 0.06 0.12  0.06 

STDEV 0.25 0.35  0.24 

 
The last column of Table 3 shows the results of proposed method. The results of our proposed model 

come close to BCC model, but there are some notable differences, particularly units 30, 26, 11, 5, 4 and 3 

are efficient in BCC model but in the proposed model are inefficient. Only six out of 37 units exactly give 

the same efficiency score as BCC model (2) does. In general, the efficiency scores of our proposed model 

(4) is always smaller than those of BCC model (2) and larger than those of CCR model (model (1)). This 

suggests that the relaxed convexity axioms can enhance the discriminatory power of the model. The 

application also demonstrates that the BCC model leads to overestimated efficiency assessments. 

Finally, we would like to emphasize on statistical analysis. The last three rows of Table 3 depict average, 

variance and standard deviation respectively. The average of the proposed method (model (4)) is smaller 

than BBC model and larger than CCR model. That is to say, this average is inserted between two known 

models’ average. This claims that the proposed model is able to identify the efficiency distribution. The 

variance of the proposed model (4) is same as the BCC model. Also, both of them are smaller than CCR 

variance quantity. What’s more, the standard deviation of proposed model (4) is extremely small. This 

claims that the efficiency scores obtained by proposed model (4) tend to be close to the average. In 

practice, dispersion of efficiency scores in proposed model (4) is extremely lower than the CCR model.  In 

other words, a low standard deviation indicates that the efficiency scores are spread out over a tighter 

range. Also, the results acknowledge that our proposed model (4) increase discrimination power of DEA 

VRS models.  

 

5. CONCLUSION 

 
Based on the widespread application of Data envelopment analysis (DEA) in performance estimation, it is 

worth to provide a suitable model to improve the efficiency. Each of the standard DEA models is 

constructed on specific postulates. Considering some axiomatic foundations, a production possibility set 

(PPS) is defined. In this paper we have presented an axiomatic foundation for a DEA model by relaxing 

the axiom of convexity. After modifying the notions of convexity, a two-step approach has been identified 

to yield a convex and monotone frontier. The proposed frontier has inserted between constant return to 

scale (CRS) DEA model and variable return to scale (VRS) DEA models. Although the efficiency score of 

https://en.wikipedia.org/wiki/Mean
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proposed model come on the average very close to those obtained by variable return to scale (VRS) DEA 

models, the differences can be rather substantial for benchmarking and target setting. An empirical 

efficiency evaluation of 37 bank branches further illustrated the importance of dealing with relaxed 

convexity axioms. Also, the application showed that the proposed model can increase the discrimination 

power of VRS models.  
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